×
24.12.2019
219.017.f18d

Результат интеллектуальной деятельности: Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления

Вид РИД

Изобретение

№ охранного документа
0002709889
Дата охранного документа
23.12.2019
Аннотация: Изобретение относится к области криогенной техники, в частности холодильной техники, и может быть использовано для получения низкотемпературных теплоносителей на основе фенилалкана. Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, в котором ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, смесь ациклического парафина и фенильного соединения перед операцией нагрева подвергают ультразвуковому кавитационному эмульгированию на частоте ультразвукового поля в пределах 315-325 кГц, при этом в дальнейшем смесь нагревают до температуры 130-170°С, а объемную скорость подачи смеси в системе для непрерывности процесса приготовления теплоносителя выбирают исходя из того, чтобы суммарное время нагрева частиц алкилируемой смеси составляло не менее 60-90 минут. Устройство для непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана содержит емкость для ациклического парафина, емкость для фенильного соединения, смесители, нагреватель, реактор алкилирования, дистиллятор, емкость сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены к каждому из смесителей, а выходы смесителей подключены к входу нагревателя, а выход нагревателя последовательно подключен к реактору алкилирования, дистиллятору, емкости сбора фенилалкана, при этом каждый смеситель выполнен в форме параллелепипеда и снабжен ультразвуковым кавитационным эмульгатором, состоящим из 8 синхронно действующих излучателей, установленных на пересечении ребер смесителя, работающих на частоте ультразвукового поля в пределах 315-325 кГц. Техническим результатом изобретения является уменьшение времени приготовления теплоносителя и снижение энергетических затрат. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области криогенной техники, в частности холодильной техники, и может быть использовано для получения теплоносителей, в том числе, низкотемпературных органических теплоносителей на основе фенилалкана.

Известен способ получения низкотемпературного органического теплоносителя на основе фенилалкана, заключающийся в гидрировании стирола газообразным водородом в присутствии катализатора с последующим выделением целевых продуктов, причем гидрированию подвергают стирол или его производные из ряда α-метилстирол или инден, а в качестве катализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля алюмогидридом лития in situ, при этом процесс проводят при атмосферном давлении водорода в среде тетрагидрофурана при температуре 50-60°С в течение 5-6 ч. (Патент РФ МПК С07С 15/073, B99Z 99/00, С07С 15/085, С07С 13/465, С07С 5/03 №2479563 от 23.03.2012 г.).

Недостатком данного способа является большая длительность процесса получения низкотемпературного органического теплоносителя на основе фенилалкана.

Другим аналогом изобретения является способ получения низкотемпературного органического теплоносителя на основе фенилалкана, заключающийся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, при этом нагрев смеси осуществляют при температуре 200°С и выдерживают смесь при данной температуре около 120 минут Устройство для реализации данного способа содержит емкость для ациклического парафина, емкость для фенильного соединения, смеситель, нагреватель, реактор алкилирования, дистиллятор, емкость сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены к смесителю, а выходы нагревателя, последовательно подключены к реактору алкилирования, дистиллятору, емкости сбора фенилалкана (Патент РФ №2296734 МПК С07С 2/66, С07С 7/13, С07С 5/333, С10М 105/06 от 25.03.2002 г.).

Недостатком данного технического решения является низкое качество проведения операции смешивания, что увеличивает продолжительность всего процесса приготовления теплоносителя, уменьшая производительность системы в части выхода продукции (теплоносителя) в единицу времени при непрерывном цикле производства. Кроме того, сам процесс смешивания в прототипе осуществляется механическими мешалками, которые принципиально не могут, даже при длительном смешивании способствовать получению гомогенной смеси. Заметим, что сам процесс алкилирования в прототипе проводится при температуре около 200°С за 120 минут.

Еще одним аналогом предлагаемого технического решения является устройство для получения низкотемпературного органического теплоносителя на основе фенилалкана, содержащее емкость для ациклического парафина, емкость для фенильного соединения, смеситель, нагреватель, реактор алкилирования, дистиллятор, емкость для сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены к смесителю, а выходы нагревателя, последовательно подключены к реактору алкилирования, дистиллятору, емкости для сбора фенилалкана (см. патент RU 2296734 С2, опубликовано 10.04.2007).

Одним из недостатков прототипа является низкая эффективность непрерывного цикла операции алкилирования, связанная с тем, что выдержка раствора в нагретом состоянии происходит в нагревателе. Это увеличивает размеры емкости нагревателя и ведет к усложнению конструкции системы, а также замедлению непрерывного процесса производства теплоносителя. Кроме этого, введение в формулу способа операции кавитационного эмульгирования, а в формулу устройства кавитационного эмульгатора, предлагаемое в прототипе, является, по существу, лишь постановкой задачи. К тому же, известно, что кавитационные эмульгаторы являются широко известными устройствами, одной из основных характеристик которых является высокая эффективность эмульгирования и гомогенизации жидких сред (см., например, патент RU 83196 U1, опубликован 27.05.2009). С другой стороны, при правильном выборе режима и диапазона частот кавитационное эмульгирование позволяет получать высокодисперсные, практически однородные и химически чистые эмульсии. Механизм образования капель эмульсии под действием кавитации связан со следующими эффектами, сопровождающими кавитацию:

- увлечение и отрыв капелек жидкости кавитационным пузырьком, пульсирующим вблизи поверхности раздела двух фаз;

- распад на капли кумулятивных микроструй, образующихся при несимметричном сжатии кавитационных пузырьков.

Обычно в технологических процессах, аналогичных способу - прототипу, в качестве кавитационного эмульгатора используются гидродинамические эмульгаторы. Гидродинамический кавитационный эмульгатор позволяет обрабатывать большие объемы смеси, чем ультразвуковой эмульгатор, однако, качество приготовления эмульсии в ультразвуковом эмульгаторе выше, то есть, с помощью ультразвукового эмульгатора можно приготовить более тонкую эмульсию. Недостатком гидродинамических эмульгаторов является достаточно низкая частота кавитационного поля, воздействующего на компоненты смеси, что может способствовать снижению гомогенности получаемой смеси. В принципе, для приготовления смеси, в узле кавитационного эмульгирования возможно последовательное комплексное использование гидродинамических, а затем и ультразвуковых эмульгаторов. Это может обеспечить дальнейшее сокращение времени нагрева смеси и, следовательно, повысить производительность установок для приготовления теплоносителей. Ультразвуковые эмульгаторы создают весьма высокочастотное кавитационное звуковое поле вплоть до значений частот в несколько мГц. Такое поле быстро затухает в объеме смесителя, который при непрерывном цикле получения теплоносителя должен иметь значительный объем, сравнимый с объемом нагревателя. Эти объемы должны быть также сравнимы с объемом реактора алкилирования, чтобы обеспечивать выдержку смеси в нагревателе в течение 60-90 минут, а также и в других элементах системы непрерывного цикла (смесителе и реакторе). Мы остановимся на использовании ультразвукового эмульгатора поскольку, именно тщательное перемешивание исходных ингредиентов в кавитационном эмульгаторе, перед операцией алкилирования, позволяет проводить эту реакцию за более короткое время и при меньших расходах энергии. Кроме того, как известно, для начала процесса образования эмульсии необходимо определенное (иногда значительное) пороговое значение интенсивности механических колебаний в каждой точке объема смесителя (см., например, С.А. Недужий «Исследование процесса образования эмульсий, вызываемого действием звуковых и ультразвуковых колебаний», Акустический Журнал 1961, 7, 3, сс. 275-294). Это заставляет не только обеспечить равномерное распределение поля в объеме смесителя, но и создать условия для генерации в объеме смесителя высокоинтенсивного звука с интенсивностью, превышающей пороговое значение. По результатам экспериментов с компонентами теплоносителя в модельных условиях (малая камера смесителя), пороговое значение интенсивности звукового поля в объеме смесителя составило от 0.7 до 3.6 вт/см2 на частоте 315-325 кГц. Для оценок примем максимальное пороговое значение 4 вт/см2. Равномерное (диффузное) распределение поля на такой высокой частоте выполняется практически для любой реальной формы и объема смесителя. Создание же поля требуемой интенсивности в объеме смесителя кубической формы объема V с коэффициентом поглощения стенок 0.5 (это реально для таких высоких частот) одним излучателем соответствует нагрузке на источник 30V2/3 кВт акустической мощности, если ненаправленный источник расположен в объеме смесителя, 15V2/3 кВт - если источник размещен на стенке, 7.5V2/3 кВт - если источник размещен на ребре прямоугольного объема и, наконец, 3.75V2/3 кВт - если источник размещен в углу объема на пересечении ребер (см., например, Morse P.M., Ingard K.U. Theoretical Acoustics, Mc.Grow - Hill, New York 1968) Выбирая форму смесителя в виде прямоугольного параллелепипеда (например, куба) и устанавливая источники во всех восьми углах объема мы снизим нагрузку на один источник до 0.5V2/3 кВт, что при площади сечения волновода порядка 10 см2 составит порядка 40V2/3 вт/см2 на поверхности каждого излучателя. Кроме этого, при таких размерах сечения волновода источник приобретает дополнительную направленность, что дополнительно снижает нагрузку на источник в несколько раз до 8V2/3 вт/см2. Допуская для пьезокерамических источников звука нагрузку не более 1 вт/см2, приходим к оценке допустимого объема смесителя V2/3 ≤ 0.125 м2 или V ≤ 0.023 м3 или, другими словами, допустимый объем смесителя не должен превышать 230 литров. Учитывая, что производительность системы определяется наименьшим объемом узла, в данном случае одного смесителя, в котором смесь, находящаяся внагревателе выдерживается от 60 до 90 минут, то производительность системы (выход теплоносителя) не превысит 2-3 литров в минуту. Этого может оказаться недостаточным для практических нужд. Дальнейшее повышение производительности системы может быть достигнуто, например, введением нескольких параллельных смесителей соединенных с нагревателем.

Техническим результатом изобретения является уменьшение времени приготовления теплоносителя за счет повышения качества смешивания ациклического парафина и фенильного соединения и снижение энергетических затрат на ультразвуковое кавитационное эмульгирование смеси и на нагрев смеси при проведении реакции алкилирования.

Технический результат достигается за счет того, что в способе непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, смесь ациклического парафина и фенильного соединения перед операцией нагрева подвергают ультразвуковому кавитационному эмульгированию на частоте поля в пределах 315-325 кГц, при этом в дальнейшем смесь нагревают до температуры 130-170°С, а объемную скорость подачи смеси в системе для непрерывности процесса приготовления теплоносителя выбирают исходя из того, чтобы суммарное время нагрева частиц алкилируемой смеси проходящих через нагреватель, составляло не менее 60-90 минут.

Устройство для непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, содержит емкость для ациклического парафина, емкость для фенильного соединения, один или несколько параллельно соединенных смесителей, нагреватель, реактор алкилирования, дистиллятор, емкость сбора фенилалкана, причем выходы емкостей для ациклического парафина и фенильного соединения соединены параллельно и подключены к каждому из смесителей, а выходы смесителей соединены со входом нагревателя, причем выход нагревателя, последовательно подключен к реактору алкилирования, дистиллятору, емкости сбора фенилалкана, при этом смесители устройства выполнены в форме параллелепипедов и снабжены кавитационными эмульгаторами, состоящими из восьми синхронно действующих излучателей, установленных на пересечении ребер смесителя, работающих на частоте ультразвукового поля в пределах 315-325 кГц, причем температура в нагревателе устройства поддерживается в пределах 130-170°С, а объемную скорость смеси, протекающей через систему, в том числе через нагреватель устройства, для обеспечения непрерывности работы устройства выбирают согласно формуле в пределах

VΣ/90<v<VΣ/60,

где v - объемная скорость подачи смеси (м3/мин), a VΣ - суммарный объем смесителей в устройстве (м3).

Сущность изобретения поясняется чертежом (Рис. 1).

Устройство для непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана содержит емкость для ациклического парафина 1, емкость для фенильного соединения 2, смеситель (смесители) 3, нагреватель 4, реактор алкилирования 5, дистиллятор 6, емкость сбора фенилалкана 7, при этом выходы емкостей для ациклического парафина 1 и фенильного соединения 2 соединены параллельно и подключены к последовательно соединенным параллельно расположенным смесителям 3, а выходы смесителей 3 подключены к нагревателю 4, реактору алкилирования 5, дистиллятору 6, емкости для сбора фенилалкана 7, при этом каждый из смесителей 3 выполнен в форме параллелепипеда и снабжен кавитационным эмульгатором, состоящем из восьми синхронно действующих излучателей с волноводами 8, соединенных с генераторами 9 работающими на частоте в пределах 315-325 кГц, установленных на пересечении ребер смесителей 3.

Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана реализуется с помощью устройства следующим образом.

Ациклический парафин и фенильное соединение из емкостей 1 и 2, соответственно, подают в смесители 3. В смесителях 3 смесь компонент перемешивают путем ультразвуковой кавитационной эмульгации на частоте ультразвукового поля в пределах 315-325 кГц, при этом в дальнейшем смесь нагревают до температуры 130-170°С в нагревателе 4, а объемную скорость подачи смеси в системе для непрерывности процесса приготовления теплоносителя выбирают исходя из того, чтобы суммарное время нагрева частиц алкилируемой смеси составляло не менее 60-90 минут, затем нагретую смесь направляют в реактор алкилирования 5 и, далее, в дистиллятор 6 и емкость для сбора теплоносителя 7. В реакторе алкилирования 5 происходит добавление к нагретой и гомогенизированной смеси катализатора алкилирования, в результате чего осуществляется реакция алкилирования и выделение готового продукта в дистилляторе 7. Готовый продукт поступает в емкость сбора фенилалкана 8.


Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления
Источник поступления информации: Роспатент

Showing 11-18 of 18 items.
05.07.2018
№218.016.6c6e

Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры ГАП, зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: - возможность получения данных о структуре ГАП в...
Тип: Изобретение
Номер охранного документа: 0002659891
Дата охранного документа: 04.07.2018
29.08.2018
№218.016.80bf

Способ подавления помехи множественного доступа в системе цифровой связи

Изобретение относится к области передачи цифровой информации и предназначено для применения в приемных устройствах систем синхронной цифровой связи. Техническим результатом является повышение эффективности компенсации помехи множественного доступа (ПМД), а именно снижение уровня остаточной...
Тип: Изобретение
Номер охранного документа: 0002665269
Дата охранного документа: 28.08.2018
13.02.2019
№219.016.b9a4

Способ приема цифровой информации в условиях межсимвольной интерференции

Изобретение относится к области передачи цифровой информации и может быть использовано в приемных устройствах систем синхронной цифровой связи, работающих, в частности, в условиях многолучевого распространения. Техническим результатом является снижение вычислительных ресурсов. Способ содержит...
Тип: Изобретение
Номер охранного документа: 0002679553
Дата охранного документа: 11.02.2019
02.10.2019
№219.017.cf73

Способ передачи информации в системе связи с шумоподобными сигналами

Изобретение относится к области передачи цифровой информации и может быть использовано для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - обеспечение возможности распараллеливания операции кодирования и одномоментное определение всех бит...
Тип: Изобретение
Номер охранного документа: 0002700657
Дата охранного документа: 18.09.2019
01.02.2020
№220.017.fc97

Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления

Изобретение относится к способу непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, заключающемуся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования,...
Тип: Изобретение
Номер охранного документа: 0002712456
Дата охранного документа: 29.01.2020
04.07.2020
№220.018.2f35

Многослойная звукоизолирующая конструкция

Изобретение относится к строительству и может быть использовано для снижения уровня шума в судовых помещениях, а также в жилых и производственных помещениях за счет повышения уровня звукоизоляции конструкций, препятствующих проникновению шума в помещения, вызываемого вибрацией ограждающих...
Тип: Изобретение
Номер охранного документа: 0002725357
Дата охранного документа: 02.07.2020
03.06.2023
№223.018.76a3

Способ электроискрового нанесения покрытий и устройство для его осуществления

Группа изобретений относится к способу и устройству для электроискрового нанесения покрытий на поверхность детали, используемых для получения износостойких, антикоррозийных и жаростойких покрытий на деталях и узлах машин. Способ включает обработку поверхности вибрирующим электродом, движущимся...
Тип: Изобретение
Номер охранного документа: 0002740936
Дата охранного документа: 21.01.2021
19.06.2023
№223.018.8288

Способ акустической локализации узлов сети транспондеров для определения положения гибкой протяженной буксируемой антенны

Изобретение относится к области морской сейсморазведки и может быть использовано для определения местоположения узлов плотной акустической сети приемопередающих устройств по временным задержкам излучаемых и принимаемых ими сигналов в ограниченном временном интервале. Согласно заявленному...
Тип: Изобретение
Номер охранного документа: 0002797156
Дата охранного документа: 31.05.2023
Showing 11-20 of 40 items.
10.12.2015
№216.013.9846

Способ транспортировки высоковязких нефтепродуктов по трубопроводу

Изобретение относится к транспортировке высоковязких нефтепродуктов по трубопроводу. По длине трубопровода через равные интервалы на нефтепродукты воздействуют акустическими колебаниями с обеспечением образования пристеночного жидкого слоя нефтепродуктов. Акустические колебания возбуждают в...
Тип: Изобретение
Номер охранного документа: 0002570602
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9892

Пневмоакустический распылитель жидкости

Изобретение относится к устройствам для распыления жидкостей, использующим периодические ударные волны, создаваемые в недорасширенных газовых струях при их торможении резонансной камерой, и может быть использовано там, где необходимо получение мелких капель, например, для создания...
Тип: Изобретение
Номер охранного документа: 0002570678
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98a1

Многослойная звукоизолирующая конструкция

Изобретение относится к строительству и может быть использовано для снижения уровня шума в судовых помещениях, а также в жилых и производственных помещениях, за счет повышения уровня звукоизоляции звукоизолирующих панелей, препятствующих проникновению шума в помещения, вызываемого вибрацией...
Тип: Изобретение
Номер охранного документа: 0002570693
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a03c

Устройство обнаружения дефектов в сварных швах в процессе сварки

Использование: для обнаружения дефектов в сварных швах в процессе сварки. Сущность изобретения заключается в том, что устройство обнаружения дефектов в сварных швах в процессе сварки содержит измерительный канал, включающий установленный вблизи сварного шва преобразователь акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002572662
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a042

Способ определения местоположения бурового инструмента в процессе бурения

Изобретение относится к области сейсмических исследований и может быть использовано в нефтяной промышленности для непрерывного контроля местоположения бурового инструмента при бурении скважин. Согласно заявленному способу осуществляют с помощью антенны одновременную синхронную регистрацию...
Тип: Изобретение
Номер охранного документа: 0002572668
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.bfb2

Буксируемое устройство для измерения акустических характеристик морского грунта

Использование: изобретение относится к области инженерных сейсмических исследований и может быть использовано в нефтяной промышленности для контроля состояния морского грунта в требуемой акватории. Сущность: в буксируемом устройстве для измерения акустических характеристик морского грунта,...
Тип: Изобретение
Номер охранного документа: 0002576352
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c131

Геофизический комплекс для мониторинга и морской сейсморазведки

Изобретение относится к комплексам для проведения гидро- и геоакустических исследований. Сущность: комплекс содержит надводную аппаратуру (1), а также установленные на дне коммутатор (3) и мультилинейные кабельные антенны с приемниками (5) давления. Надводная аппаратура (1) соединена с...
Тип: Изобретение
Номер охранного документа: 0002576351
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.30c5

Гибкая протяженная приемная гидроакустическая антенна

Изобретение относится к гидроакустическим системам навигации подводных аппаратов. Технический результат - снижение гидродинамических шумов и расширение частотной полосы антенны в области низких частот. Антенна содержит внешнюю эластичную кабельную оболочку, армирующий силовой элемент, набор...
Тип: Изобретение
Номер охранного документа: 0002580397
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3323

Акустическое устройство обнаружения и определения местоположения дефектов в сварных швах

Использование: для неразрушающего контроля качества сварных швов с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что акустическое устройство обнаружения и определения местоположения дефектов в сварных швах содержит измерительный канал, включающий...
Тип: Изобретение
Номер охранного документа: 0002582154
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3497

Способ разрушения асфальтосмолистых и парафиновых отложений в скважинах, оборудованных штанговыми глубинными насосами, и скважина для добычи нефти

Группа изобретений относится к области добычи нефти с использованием добывающих скважин, оборудованных штанговыми глубинными насосами. Технический результат - повышение эффективности работы добывающей скважины. По способу на трубе системы устьевой герметизации скважины, расположенной выше...
Тип: Изобретение
Номер охранного документа: 0002581592
Дата охранного документа: 20.04.2016
+ добавить свой РИД