×
21.12.2019
219.017.f068

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области защиты оптико-электронных средств (ОЭС) и касается способа защиты ОЭС от мощного лазерного излучения. Способ заключается в приеме оптического излучения оптико-электронным средством и пропускании оптического излучения через защитный элемент, установленный перед элементом из состава оптико-электронного средства, имеющим минимальные значения лучевой стойкости и времени разрушения под воздействием оптического излучения. Защитный элемент имеет лучевую стойкость и время разрушения меньше соответствующих значений защищаемого элемента. Защитный элемент имеет спектральные параметры своего и отражаемого оптических излучений, сопровождающих процесс его разрушения под воздействием оптического излучения, идентичные соответствующим параметрам защищаемого элемента. Защита ОЭС от мощного лазерного излучения осуществляется за счет разрушения защитного элемента и имитации разрушения защищаемого элемента. Разрушенный защитный элемент заменяют новым защитным элементом. Технический результат заключается в повышении эффективности защиты ОЭС от поражения лазерным излучением. 2 ил.

Изобретение относится к области защиты оптико-электронных средств (ОЭС) от мощных оптических излучений.

Известен способ защиты приемника оптического излучения (см., например, [1]), основанный на приеме входного оптического потока матричным фотоприемным устройством (МФПУ), измерении величины ii выходного сигнала каждого i-го чувствительного элемента (ЧЭ) МФПУ, где - номер ЧЭ МФПУ, N - количество ЧЭ в МФПУ, и сравнении ее значения с пороговым iП, закрытии при превышении величины ij выходного сигнала j-ого ЧЭ МФПУ порогового значения iП j-ой части входного оптического потока, где - номер ЧЭ МФПУ, выходной сигнал которого превысил пороговое значение и номер части входного оптического потока падающего на этот ЧЭ МФПУ, периодическом открытии j-ой части входного оптического потока и измерении величины ij выходного сигнала j-го ЧЭ МФПУ, закрытии при ij≥iП j-ой части входного оптического потока, оставлении при ij<iП j-ой части входного оптического потока открытой. Недостатком способа является осуществление эффективного процесса защиты от мощного оптического излучения только МФПУ, что ограничивает его применения для широкого класса оптико-электронных средств. Например, для одноэлементных приемников способ осуществляет временное перекрытие всего входного потока оптического излучения и его заявленный технических результат теряется. В случае применения лазерных средств по ОЭС с контролем эффективности отсутствие эффектов поражения от мощного лазерного излучения может привести к повторному воздействию.

Наиболее близким по технической сущности и достигаемому результату является способ защиты фотоприемника (см., например, [2]), основанный на локальном прожиге лазерным излучением при превышении пороговой лучистойстойкости металлической зеркальной пленки толщиной соизмеримой с глубиной проникновения излучения и отводе части лазерного излучения через образованное отверстие. Недостатком способа является отсутствие имитации процесса разрушения фотоприемника, что случае применения лазерных средств по ОЭС с контролем эффективности, отсутствие эффектов от лазерного излучения может привести к повторному воздействию.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности защиты ОЭС от поражения лазерным излучением.

Технический результат достигается тем, что в известном способе защиты ОЭС от мощного лазерного излучения, основанном на приеме оптического излучения ОЭС, пропускают оптическое излучение через заранее установленный перед элементом из состава ОЭС с минимальным значением лучевой стойкости EЭmin и временем разрушения под воздействием оптического излучения равным tЭраз защитный элемент со значениями лучевой стойкости ЕЗЭ и времени разрушения под воздействием оптического излучения tЗЭраз меньше значений ЕЭmin и tЭраз соответственно, пропускающий оптическое излучение мощностью не превышающей значение Е и имеющий спектральные параметры своего и отражаемого оптических излучений, сопровождающие процесс разрушения под воздействием оптического излучения мощностью превышающей значение ЕЗЭ, идентичные элементу с минимальным значением EЭmin, защищают при воздействии оптического излучения мощностью превышающей значение EЗЭ ОЭС разрушением защитного элемента и имитируют разрушение элемента с минимальным значением EЭmin, заменяют при разрушении защитного элемента под воздействием оптического излучения новым.

Сущность предлагаемого способа заключается в следующем. Защита ОЭС осуществляется введением в его состав защитного элемента 4, изготовленного из материалов с обобщенными спектральными характеристиками и параметрами лучевой стойкости, позволяющими защитить элемент ОЭС с минимальным значением лучевой стойкости от поражения мощным лазерным излучением и имитировать его поражение.

При реализации возможности контроля результатов воздействия лазерного излучения, отсутствие признаков поражения провоцирует повторное его применение (см., например, [3, стр. 264-266], [4, стр. 66-71]). Следовательно, воспроизведение дополнительного признака, определяющего имитацию результатов воздействием мощного оптического излучения на ОЭС повысит эффективность его защиты и снизит вероятность повторного воздействия лазерным излучением.

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - источник мощного лазерного излучения и сопряженное с ним оптико-электронное локационное средство с контролем состояния ОЭС на воздействие лазерного излучения (ИМЛИ и ОЭЛС); 2 - ОЭС; 3 - формирующая оптика; 4 - защитный элемент; 5 - элемент ОЭС с минимальным значением лучевой стойкости (например, фотоприемник, находящийся в фокусе объектива ОЭС); 6 - блок контроля факта срабатывания защитного элемента. На фигуре 1 исключены элементы ОЭС, ненесущие смысловой нагрузки для раскрытия сущности изобретения и в качестве элемента с минимальным значением лучевой стойкости EЭmin без защитного элемента 4 используется фотоприемник 5, время разрушения под воздействием лазерного излучения которого составляет tЭраз. Защитный элемент 4, имеет спектральные характеристики отражения лазерного излучения и своего излучения при разрушения под воздействием лазерного излучения идентичные элементу (фотоприемнику 5) из состава ОЭС с минимальным значением EЭmin, но значение его лучевой стойкости ЕЗЭ и времени разрушения tЗЭраз меньше значений EЭmin и tЭраз. При этом защитный элемент 4 «прозрачен» для излучения спектрального диапазона функционирования ОЭС в целом.

ИМЛИ и ОЭЛС 1 осуществляет поиск ОЭС 2. При приеме отраженного от ОЭС 2 изучения ОЭЛС 1 идентифицирует его и облучает мощным лазерным изучением. Мощное лазерное изучение ИМЛИ 1 попадает на ОЭС 2, которое фокусируется через введенный в состав ОЭС 2 защитный элемент 4 на фотоприемнике 5. Так как защитный элемент 4 по своим характеристикам «разрушается» быстрее чем фотоприемник 5, то его 4 процессы разрушения выполняют защитную функцию для фотоприемника 5. При этом спектральные параметры своего излучения и отраженного излучения, сопровождающие процесс разрушения защитного элемента 4 вводят в заблуждения ОЭЛС 1, как при пассивной, так и активной локации ОЭС. Защитные функции защитного элемента 4 базируются на процессах разрушения, связанных с изменением характеристик пропускной способности под действием лазерного излучения, заключающиеся в плавлении, испарении и образовании плазменных образований материала, снижающих энергию падающего (прошедшего) излучения на фотоприемник 5. Для осуществления повторного процесса защиты ОЭС защитный элемент 4 заменяют новым, например, блок контроля факта срабатывания защитного элемента 6 осуществляет контроль состояния защитного элемента 6 по температурным и временным параметрам (резкий скачок температуры). Таким образом, введение в состав защитного элемента 4 с указанными выше характеристиками позволяет осуществить защиту ОЭС от мощного лазерного излучения и ввести в заблуждение ИМЛИ и ОЭЛС 1 о своем поражении.

На фигуре 2 изображена блок схема устройства, реализующего способ. Блок - схема включает: лазерный луч 7; N-элементный защитный диск 8 (на фигуре N=4), каждый элемент которого имеет термодатчик 10; поворотный привод 9; блок анализа сигналов фотоприемника 11; остальные обозначения соответствуют фигуре 1.

Устройство работает следующим образом. Мощное лазерное изучение 7 падает на N-элементный защитный диск 8. I-ый элемент защитного диска 8 под действием мощного лазерного излучения «разрушается» Изменение (нагревание) температуры i-ого элемента защитного диска 8 контролирует соответствующий i-ый термодатчик 10. Значения температуры i-ого элемента защитного диска 8 i-ый термодатчик 10 передает в блок контроля факта срабатывания защитного элемента 6. Блок контроля факта срабатывания защитного элемента 6 по значениям температуры определяет факт облучения ОЭС мощным лазерным излучением и вырабатывает сигнал в блок анализа сигналов фотоприемника 11 и поворотный привод 9. Поворотный привод 9 поворотом N-элементного защитного диска 8 заменяет поврежденных i-ый элемент «целым» (i+1-ым). Блок анализа сигналов фотоприемника 11 формирует решение, что значения выходных сигналов фотоприемника 5 содержит информацию воздействия мощного лазерного излучения, например, внезапная засветка изображения.

Таким образом, у заявляемого способа появляются свойства повышения эффективности защиты ОЭС от поражения лазерным излучением за счет введения в его состав защитного элемента, изготовленного из материалов с обобщенными спектральными характеристиками и параметрами лучевой стойкости, позволяющими защитить элемент ОЭС с минимальным значением лучевой стойкости от поражения мощным лазерным излучением и имитировать его поражение. Тем самым, предлагаемый авторами, способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ защиты ОЭС от мощного лазерного излучения, основанный на приеме оптического излучения ОЭС, пропускании оптического излучения через заранее установленный перед элементом из состава ОЭС с минимальным значением лучевой стойкости EЭmin и временем разрушения под воздействием оптического излучения равным tЭраз защитный элемент со значениями лучевой стойкости ЕЗЭ и времени разрушения под воздействием оптического излучения tЗЭраз меньше значений EЭmin и tЭраз соответственно, пропускающий оптическое излучение мощностью не превышающей значение ЕЗЭ и имеющий спектральные параметры своего и отражаемого оптических излучений, сопровождающие процесс разрушения под воздействием оптического излучения мощностью превышающей значение ЕЗЭ, идентичные элементу с минимальным значением EЭmin, защите при воздействии оптического излучения мощностью превышающей значение ЕЗЭ ОЭС разрушением защитного элемента и имитации разрушения элемента с минимальным значением EЭmin, замене при разрушении защитного элемента под воздействием оптического излучения новым.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые электронные узлы и оптические элементы. Например, в качестве материала для защитного элемента могут использоваться фуллерены, композитные материалы с наночастицами различного вещества и др., сочетание оптических свойств которых позволяет в зависимости от требуемых энергетических параметров обеспечить необходимые «пропускные и защитные» характеристики (см., например, [5]).

1 Пат. 2363017 RU, МПК H04N 5/238, H01L 31/0232. Способ защиты приемника оптического излучения / Ю.Л. Козирацкий, А.Ю. Козирацкий, П.Е. Кулешов, Р.Г. Хильченко, Д.В. Прохоров, Д.Е. Столяров; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2016107511; заявл. 01.03.16; опубл. 16.11.17, Бюл. №32. - 11 с.

2 Чесноков В.В., Чесноков Д.В., Шлишевский В.Б. Пленочные пассивные оптические затворы для защиты приемников изображения от ослепления / В.В. Чесноков, Д.В. Чесноков, В.Б. Шлишевский // Оптический журнал. 2011. - №78,6. - С. 39-46.

3 Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Козирацкий А.Ю., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с.

4 Чернухо И.И., Козирацкий Ю.Л., Прохоров Д.В., Курьянов И.Ю., Алабовский А.В. Обоснование устройства контроля степени проникновения лазерного луча в многослойный материал на основе пассивной локации / И.И. Чернухо, Ю.Л. Козирацкий, Д.В. Прохоров, И.Ю. Курьянов, А.В. Алабовский // Радиотехника. - 2015. - №12. - С. 66-71.

5 Белоусова И.М., Данилов О.Б., Сидоров А.И. Нелинейно-оптические ограничители лазерного излучения / И.М. Белоусова, О.Б. Данилов, А.И. Сидоров // Оптический журнал. 2009. - №76,4. - С. 71-85.

Способ защиты ОЭС от мощного лазерного излучения, основанный на приеме оптического излучения оптико-электронным средством, отличающийся тем, что пропускают оптическое излучение через заранее установленный перед элементом из состава оптико-электронного средства с минимальным значением лучевой стойкости E и временем разрушения под воздействием оптического излучения, равным t, защитный элемент со значениями лучевой стойкости Е и времени разрушения под воздействием оптического излучения t меньше значений E и t соответственно, пропускающий оптическое излучение мощностью, не превышающей значение Е, и имеющий спектральные параметры своего и отражаемого оптических излучений, сопровождающие процесс разрушения под воздействием оптического излучения мощностью, превышающей значение Е, идентичные элементу с минимальным значением E, защищают при воздействии оптического излучения мощностью, превышающей значение Е, оптико-электронное средство разрушением защитного элемента и имитируют разрушение элемента с минимальным значением E, заменяют при разрушении защитного элемента под воздействием оптического излучения новым.
СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СПОСОБ ЗАЩИТЫ ОЭС ОТ МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 81-90 of 244 items.
17.11.2018
№218.016.9e8d

Способ обнаружения препятствий в зоне посадки вертолета

Изобретение относится к радиолокационным системам посадки вертолета и может быть использовано при их разработке. Достигаемый технический результат - повышение вероятности обнаружения препятствий в зоне посадки за счет приема эхо-сигналов непосредственно из зоны посадки вертолета независимо от...
Тип: Изобретение
Номер охранного документа: 0002672578
Дата охранного документа: 16.11.2018
23.11.2018
№218.016.a032

Теплообменный аппарат

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002673119
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0cd

Способ защиты объектов от телевизионных средств космического наблюдения

Изобретение относится к области защиты объектов путем постановки аэрозольных образований и может быть использовано для маскировки объектов. Определяют параметры метеообстановки, координаты и интенсивность сброса аэрозолеобразующего состава (АОС), формируют аэрозольную завесу (AЗ). Сканируют по...
Тип: Изобретение
Номер охранного документа: 0002673169
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0ec

Частотомер

Изобретение относится к области радиотехники, в частности к средствам оценивания статистических характеристик обнаружения радиосигналов, и может быть использовано для измерения частоты появления сигналов радиоэлектронных средств, а также проведения экспериментальных исследований. Технический...
Тип: Изобретение
Номер охранного документа: 0002673240
Дата охранного документа: 23.11.2018
13.01.2019
№219.016.af38

Способ поиска оптических и оптико-электронных приборов

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без...
Тип: Изобретение
Номер охранного документа: 0002676856
Дата охранного документа: 11.01.2019
22.02.2019
№219.016.c5ad

Способ концентрирования флороглюцина из водных растворов

Настоящее изобретение относится к способу концентрирования флороглюцина из водных растворов и может быть использовано при аналитическом контроле сточных вод, поступающих на биологическую очистку. Способ заключается в экстракции флороглюцина трибутилфосфатом из подкисленных до рН=1-5 водных...
Тип: Изобретение
Номер охранного документа: 0002680394
Дата охранного документа: 20.02.2019
23.02.2019
№219.016.c6c3

Способ защиты объектов от радиолокационных огневых комплексов

Изобретение относится к области систем защиты объектов от средств воздушной разведки, прицеливания и наведения путем формирования ложной радиолокационной обстановки и может быть использовано для радиолокационной маскировки индивидуальных и групповых стационарных объектов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002680515
Дата охранного документа: 22.02.2019
21.03.2019
№219.016.eb5e

Тепловой имитатор

Изобретение относится к области снижения заметности вооружения и военной техники, ввода в заблуждение средств поражения высокоточным оружием, обеспечения скрытности от тепловизионных, оптикоэлектронных средств воздушно-космической разведки, увода и срыва прицеливания инфракрасных головок...
Тип: Изобретение
Номер охранного документа: 0002682355
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ed07

Способ концентрирования гидрохинона из водных растворов

Изобретение относится к способу концентрирования гидрохинона из водных растворов, который может быть использован при аналитическом контроле очищенных сточных вод, поступающих на биологическую очистку. Способ включает концентрирование гидрохинона полимерным порошкообразным материалом, в качестве...
Тип: Изобретение
Номер охранного документа: 0002682965
Дата охранного документа: 25.03.2019
01.04.2019
№219.016.fa3e

Центробежная форсунка

Изобретение относится к средствам распыливания жидкостей, растворов и может применяться в химической, пищевой промышленности, а также может быть использовано в системе топливоподачи различных энергетических устройств. Центробежная форсунка состоит из корпуса, шнека, в нижней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002683610
Дата охранного документа: 29.03.2019
Showing 51-53 of 53 items.
25.04.2020
№220.018.1984

Способ поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке заключается в определении пространственных координат района местоположения цели,...
Тип: Изобретение
Номер охранного документа: 0002719891
Дата охранного документа: 23.04.2020
20.04.2023
№223.018.4acb

Способ помехозащиты оптико-электронных средств от мощных лазерных комплексов

Изобретение относится к радиолокации и может использоваться для защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Технический результат состоит в повышении эффективности защиты ОЭС от поражения оптическим излучением. Для этого принимают оптические излучения ОЭС,...
Тип: Изобретение
Номер охранного документа: 0002777049
Дата охранного документа: 01.08.2022
21.04.2023
№223.018.4f43

Способ скрытия оптико-электронного средства воздушного комплекса оптико-электронного наблюдения

Изобретение относится к области оптико-электронной техники. Способ скрытия оптико-электронного средства (ОЭС) воздушного комплекса оптико-электронного наблюдения (ВКОЭН) базируется на осуществлении наблюдения участков подстилающей поверхности ОЭС ВКОЭН путем полета беспилотного летательного...
Тип: Изобретение
Номер охранного документа: 0002792921
Дата охранного документа: 28.03.2023
+ добавить свой РИД