×
21.12.2019
219.017.f00a

Результат интеллектуальной деятельности: СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к микро- и нанотехнологии. Способ неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке включает одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и определение параметров намагниченности пленки расчетным путем, при этом постоянное магнитное поле ориентируют по нормали к поверхности ферритовой пленки, воздействие СВЧ магнитным полем осуществляют в импульсном режиме, регулируя величину постоянного магнитного поля и/или частоту заполнения радиоимпульсов до возбуждения в ферритовой пленке радиоимпульсов обменных спиновых волн, бегущих вглубь ферритовой пленки и отражающихся от ее противоположной поверхности, измеряют время задержки отраженных эхоимпульсов обменных спиновых волн и соответствующие величины частоты заполнения радиоимпульса и постоянного магнитного поля. Технический результат – расширение функциональных возможностей способа неразрушающего контроля. 6 ил.

Изобретение относится к микро- и нанотехнологии, и может быть использовано для неразрушающего контроля слоистой структуры эпитаксиальных ферритовых пленок на немагнитных подложках, в частности – на стадии разработки режимов эпитаксиального роста и на стадии финишного контроля готовой продукции.

Проблемой эпитаксиальных ферритовых пленок является неоднородность химического состава по толщине пленки, что обуславливает неоднородность по толщине магнитных свойств. В частности, в процессе эпитаксиального роста на границе пленка-подложка, возникает диффузионный переходный слой, который характеризуется пониженной намагниченностью. Наличие этого слоя оказывает существенное влияние на характеристики спин-волновых, магнитооптических и магнитоакустических устройств. Это обуславливает актуальность оперативного контроля слоистой структуры ферритовых пленок.

Известен способ исследования слоистой структуры эпитаксиальной ферритовой пленки, использующий методы послойного стравливания и спектрального анализа химического состава пленки (Ющук С.И. //ЖТФ. 1999. Т.69. В.12. С. 62-64). Однако этот способ дает лишь качественное представление о намагниченности слоев. К тому же сама пленка при этом полностью разрушается.

Известны магнитооптические способы неразрушающего контроля намагниченности, основанные на визуальном наблюдении перестройки доменной структуры ферритовой пленки.

Так, известен способ измерения намагниченности насыщения ферритовой плёнки (см., например, А.С. СССР №1539698, G 01 R 33/05, опубл. 30.01.90), заключающийся в воздействии на плёнку постоянным магнитным полем, перпендикулярным поверхности плёнки, и высокочастотным магнитным полем, параллельным поверхности плёнки. На плёнку дополнительно воздействуют низкочастотным магнитным полем, направленным перпендикулярно поверхности плёнки, регистрируют производную сигнала поглощения ферромагнитного резонанса по постоянному магнитному полю, измеряют разность напряжённостей постоянного магнитного поля, соответствующих пиковым значениям указанной производной и намагниченность определяют при выбранном значении отношений этих производных.

Известен также способ определения параметров тонких магнитных плёнок (см. патент РФ №2047183, G01R 33/05, опубл. 27.10.1995), включающий воздействие на образец постоянным магнитным полем смещения, переменным модулирующим полем и фотоэлектрическую регистрацию переменной компоненты намагниченности, при этом переменное магнитное поле создают с помощью двух синхронных противофазных источников с градиентом, перпендикулярном плоскости образца, и устанавливают образец в положение, при котором смена знака фазы результирующего поля модуляции происходит в заданном слое образца.

Однако эти способы сложны и трудоемки. К тому же они применимы только для одноосных ферритовых пленок.

Известны магниторезонансные способы неразрушающего контроля намагниченности, основанные на измерении характеристик ферромагнитного резонанса ферритовых пленок. В частности, известен способ определения параметров эпитаксиальных магнитных плёнок (см., например, А.С. СССР №1649479, G01R 33/05, опубл. 15.05.91), заключающийся в определении амплитуды резонансного поглощения электромагнитной энергии магнитного поля и определении параметров плёнок из определённых математических выражений.

Однако этот способ позволяют измерять только усредненное значение намагниченности пленки.

Наиболее близким к заявляемому изобретению является спин-волновой способ неразрушающего контроля намагниченности ферритовых пленок, основанный на возбуждении дипольно-спиновых (магнитостатических) волн и измерении их дисперсионных характеристик (см., А.С. №1755220, G01R 33/05, опубл.15.08.92), при этом способ предусматривает одновременное воздействие постоянного магнитного поля и СВЧ магнитного поля на две параллельно расположенные области плёнки. Используя дисперсионное уравнение, получают значение намагниченности насыщения пленки.

Недостатком данного способа является отсутствие возможности анализа распределения намагниченности по толщине эпитаксиальной ферритовой пленки.

Проблема, на решение которой направлено изобретение, заключается в создании способа неразрушающего контроля ферритовых пленок с возможностью определения распределения намагниченности по толщине.

Техническим результатом изобретения является расширение функциональных возможностей за счет обеспечения определения распределения намагниченности по толщине пленки.

Указанная проблема достигается тем, что в способе неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке, включающем одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и определение намагниченности пленки расчетным путем, согласно решению, постоянное магнитное поле ориентируют по нормали к поверхности ферритовой пленки, воздействие СВЧ магнитным полем осуществляют в импульсном режиме, регулируя величину постоянного магнитного поля и/или частоту заполнения радиоимпульсов до возбуждения в ферритовой пленке радиоимпульсов обменных спиновых волн, бегущих вглубь ферритовой пленки и отражающихся от ее противоположной поверхности, измеряют время задержки отраженных эхоимпульсов обменных спиновых волн и соответствующие величины частоты заполнения радиоимпульса и постоянного магнитного поля , подставляют измеренные значения в уравнение для группового времени задержки обменных спиновых волн , где - дисперсионное выражение для волнового числа обменных спиновых волн, =2.83МГц/Э – гиромагнитное отношение, =3.5.10-11 см2 – постоянная неоднородного обмена, - функция распределения намагниченности насыщения по толщине ферритовой пленки, - координата толщины ферритовой пленки, - параметр распределения намагниченности насыщения по толщине ферритовой пленки, вычисляют значение параметра из уравнения группового времени задержки обменных спиновых волн, подставляют вычисленный параметр в формулу функции распределения намагниченности насыщения, строят график зависимости намагниченности насыщения по толщине ферритовой пленки .

Изобретение поясняется иллюстрациями, где:

- на фиг. 1 представлена схема измерительной установки для реализации заявляемого способа,

- на фиг. 2 – осциллограмма эхоимпульсов и результаты измерения относительного времени задержки обменной спиновой волны,

- на фиг. 3 – график зависимости времени задержки отраженных эхоимпульсов обменных спиновых волн от параметра распределения намагниченности насыщения по толщине ферритовой пленки,

- на фиг. 4 – график функции распределения намагниченности по толщине переходного слоя,

- на фиг.5 – результаты расчета дисперсии ОСВ пределах толщины переходного слоя,

- на фиг. 6 – получено значение рассчитанной фазовой и групповой скорости.

На иллюстрациях позициями обозначено:

1 – эпитаксиальная пленка железоиттриевого граната (ЖИГ);

2 – подложка гадолиний-галлиевого граната (ГГГ);

3 – закороченная на конце микрополосковая линия;

4 – ферритовый циркулятор;

5 – генератор радиоимпульсов;

6 – измерительный осциллограф.

Способ реализуется следующим образом.

В качестве зондирующей волны используется обменная спиновая волна (ОСВ), которая при нормальном намагничивании ферритовой пленки и при наложении однородного СВЧ магнитного поля возбуждается в тонком переходном слое на границе пленка-подложка, распространяется вглубь пленки и отражается от ее противоположной поверхности. В переходном слое отраженные волны частично преобразовываются в СВЧ сигнал, а частично отражаются вглубь ферритовой пленки. Эти процессы повторяются многократно. При импульсном возбуждении ОСВ это проявляется в виде серии задержанных эхоимпульсов, следующих с равными временными интервалами , пропорциональными длине пробега эхоимпульса ОСВ , где - толщина ферритовой пленки. Существенно, что при заданных значениях частоты и намагничивающего поля длина волны и, соответственно, скорость распространения излучаемых ОСВ существенно зависит от распределения намагниченности внутри переходного слоя.

В данном изобретении распределение намагниченности по толщине ферритовой пленки определяется по результатам измерения относительного времени задержки эхоимпульсов, которое может быть осуществлено, например, с помощью установки на фиг. 1.

Для расчета намагниченности в слое используется выражение группового времени задержки ОСВ на длине пробега эхоимпульса

, (1)

где

- (2)

дисперсионное выражение для волнового числа ОСВ, полученное из уравнения Ландау-Лифшица, записанного с учетом неоднородного обмена, - круговая частота, - напряженность постоянного намагничивающего поля, МГц/Э - гиромагнитное отношение, см2 - постоянная неоднородного обмена, - функция распределения намагниченности по толщине переходного слоя, которая согласно законам диффузии в твердых телах имеет экспоненциальный характер и записывается в виде

, (3)

где - намагниченность насыщения чистого феррита, - феноменологический параметр.

Параметр определяется в результате решения трансцендентного уравнения, которое получается при подстановке в выражение (1) фиксированных значений и , при которых была измерена задержка эхоимпульса . Подстановка в (3) найденного значения определяет функцию распределения намагниченности по толщине ферритовой пленки.

Ниже приведен пример реализации изобретения. Для наблюдения эффектов импульсного возбуждения обменной спиновой волны (ОСВ) использовалась эпитаксиальная пленка железоиттриевого граната (ЖИГ) 1, выращенная методом жидкофазной эпитаксии на немагнитной подложке гадолиний - галлиевого граната (ГГГ) 2. Предварительно пленка подвергалась химико-механической полировке на глубину 1-2 мкм. Конечная толщина пленки составляла мкм. Экспериментальный образец пленки ЖИГ был выполнен в виде диска диаметром 2.5мм. В качестве преобразователя ОСВ использовалась закороченная на конце микрополосковая линия (МПЛ) 3. Ширина МПЛ составляла 3.0 мм. Образец пленки вместе с преобразователем помещался в постоянное магнитное поле Э, ориентированное по нормали к поверхности пленки. На вход МПЛ 3 от генератора радиоимпульсов 5 через циркулятор 4 подавался радиоимпульс длительностью 20нс с частотой заполнения 3ГГц. С помощью осциллографа 6 измерялось время относительной задержки эхоимпульсов ОСВ.

Осциллограмма эхоимпульсов и результаты измерения относительного времени задержки ОСВ представлены на фиг.2.

Учитывая, что толщина пленки составляла , нетрудно было посчитать групповую скорость ОСВ . В нашем случае она составляла , что на порядок меньше скорости звука в ЖИГ.

Обработка результатов измерений проводилась по следующей методике. В формулу (1) подставлялись фиксированные значения =3 ГГц и =2350 Э, проводился расчет зависимости . Расчеты проводились численными методами. По результатам вычислений строился график зависимости , представленный на фиг.3. По графику фиг.3 определялось значение параметра =82093 см-1, которое соответствовало измеренному времени задержки эхоимпульсов =49.45нс. Найденное значение подставлялось в формулу (3), рассчитывалась функция распределения намагниченности по толщине переходного слоя , график которой представлен на фиг.4.

Аналогично при подстановке в (2) фиксированного значения =2350 Э и найденного значения параметра рассчитывался закон дисперсии ОСВ . На графике фиг.5 представлены результаты расчета дисперсии ОСВ пределах толщины переходного слоя.

Видно, что в переходном слое волновые числа ОСВ возрастают от нуля до максимального значения, характерного для пленки чистого ЖИГ на заданной частоте .

Для сравнения на фиг.6 представлены графики частотной зависимости групповой и фазовой скоростей, рассчитанные вдали от переходного слоя.

Из графика фиг.6 было получено значение рассчитанной групповой скорости =5.37⋅104 см/с, которое с точностью 99% совпадало с =5.31⋅104 см/с, измеренным по задержке эхоимпульсов на фиг.2.


СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
Источник поступления информации: Роспатент

Showing 41-50 of 90 items.
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
19.10.2018
№218.016.9383

Композиция для получения биоразлагаемого полимерного материала и биоразлагаемый полимерный материал на её основе

Изобретение относится к получению биоразлагаемых полимерных материалов, содержащих смесь крахмала с поливиниловым спиртом, применяемых в производстве упаковочных термоформованных изделий и пленок, способных к биодеструкции под действием климатических факторов и микроорганизмов. Композиция для...
Тип: Изобретение
Номер охранного документа: 0002669865
Дата охранного документа: 16.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a70e

Материал для изготовления многоострийного автоэмиссионного катода

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Материал для изготовления многоострийного автоэмиссионного катода...
Тип: Изобретение
Номер охранного документа: 0002674752
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7cb

Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002675020
Дата охранного документа: 14.12.2018
03.02.2019
№219.016.b6b5

Способ моделирования развития мозговых геморрагий у гипертензивных мышей

Изобретение относится к области медицины, в частности к экспериментальной медицине. В качестве стрессорного фактора используют создание условий социального стресса в виде перенаселения мышей в течение не менее 4-х месяцев и при достижении гипертензивных уровней артериального давления и частоты...
Тип: Изобретение
Номер охранного документа: 0002678798
Дата охранного документа: 01.02.2019
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
Showing 1-5 of 5 items.
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
27.09.2015
№216.013.7e13

Разнесенная радиолокационная станция со сторонним подсветом сетей сотовой связи стандарта gsm

Изобретение относится к области разнесенной радиолокации. Техническим результатом является увеличение дальности и постоянства показателей обнаружения целей полуактивной разнесенной радиолокационной станцией (РЛС) со сторонним подсветом, создаваемым базовой станцией стандарта GSM, за счет...
Тип: Изобретение
Номер охранного документа: 0002563872
Дата охранного документа: 27.09.2015
13.02.2019
№219.016.b99b

Однокомпонентный сенсор геомагнитных полей

Изобретение относится к устройствам для проведения векторных измерений слабых геомагнитных полей. Однокомпонентный сенсор геомагнитных полей содержит три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты, одноименные полюсы которых присоединены...
Тип: Изобретение
Номер охранного документа: 0002679461
Дата охранного документа: 11.02.2019
12.07.2019
№219.017.b2ff

Способ регуляризованного обнаружения полезных радиосигналов

Изобретение относится к области радиотехники и может быть использовано в системах загоризонтной радиолокации (ЗГРЛ), радиозондирования и радиопеленгации. Достигаемый технический результат – повышение надежности загоризонтного обнаружения местоположения и параметров движения цели - объектов...
Тип: Изобретение
Номер охранного документа: 0002694235
Дата охранного документа: 10.07.2019
23.05.2020
№220.018.202d

Способ определения интервалов относительной стационарности сигналов ионосферно-пространственного распространения радиоволн

Изобретение относится к области радиотехники, конкретно к способу определения в реальном времени текущих интервалов относительной стационарности сигналов загоризонтной радиолокации и предназначено для обеспечения адаптации систем загоризонтной радиолокации методом оперативных измерений текущих...
Тип: Изобретение
Номер охранного документа: 0002721622
Дата охранного документа: 21.05.2020
+ добавить свой РИД