×
21.12.2019
219.017.f00a

Результат интеллектуальной деятельности: СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к микро- и нанотехнологии. Способ неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке включает одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и определение параметров намагниченности пленки расчетным путем, при этом постоянное магнитное поле ориентируют по нормали к поверхности ферритовой пленки, воздействие СВЧ магнитным полем осуществляют в импульсном режиме, регулируя величину постоянного магнитного поля и/или частоту заполнения радиоимпульсов до возбуждения в ферритовой пленке радиоимпульсов обменных спиновых волн, бегущих вглубь ферритовой пленки и отражающихся от ее противоположной поверхности, измеряют время задержки отраженных эхоимпульсов обменных спиновых волн и соответствующие величины частоты заполнения радиоимпульса и постоянного магнитного поля. Технический результат – расширение функциональных возможностей способа неразрушающего контроля. 6 ил.

Изобретение относится к микро- и нанотехнологии, и может быть использовано для неразрушающего контроля слоистой структуры эпитаксиальных ферритовых пленок на немагнитных подложках, в частности – на стадии разработки режимов эпитаксиального роста и на стадии финишного контроля готовой продукции.

Проблемой эпитаксиальных ферритовых пленок является неоднородность химического состава по толщине пленки, что обуславливает неоднородность по толщине магнитных свойств. В частности, в процессе эпитаксиального роста на границе пленка-подложка, возникает диффузионный переходный слой, который характеризуется пониженной намагниченностью. Наличие этого слоя оказывает существенное влияние на характеристики спин-волновых, магнитооптических и магнитоакустических устройств. Это обуславливает актуальность оперативного контроля слоистой структуры ферритовых пленок.

Известен способ исследования слоистой структуры эпитаксиальной ферритовой пленки, использующий методы послойного стравливания и спектрального анализа химического состава пленки (Ющук С.И. //ЖТФ. 1999. Т.69. В.12. С. 62-64). Однако этот способ дает лишь качественное представление о намагниченности слоев. К тому же сама пленка при этом полностью разрушается.

Известны магнитооптические способы неразрушающего контроля намагниченности, основанные на визуальном наблюдении перестройки доменной структуры ферритовой пленки.

Так, известен способ измерения намагниченности насыщения ферритовой плёнки (см., например, А.С. СССР №1539698, G 01 R 33/05, опубл. 30.01.90), заключающийся в воздействии на плёнку постоянным магнитным полем, перпендикулярным поверхности плёнки, и высокочастотным магнитным полем, параллельным поверхности плёнки. На плёнку дополнительно воздействуют низкочастотным магнитным полем, направленным перпендикулярно поверхности плёнки, регистрируют производную сигнала поглощения ферромагнитного резонанса по постоянному магнитному полю, измеряют разность напряжённостей постоянного магнитного поля, соответствующих пиковым значениям указанной производной и намагниченность определяют при выбранном значении отношений этих производных.

Известен также способ определения параметров тонких магнитных плёнок (см. патент РФ №2047183, G01R 33/05, опубл. 27.10.1995), включающий воздействие на образец постоянным магнитным полем смещения, переменным модулирующим полем и фотоэлектрическую регистрацию переменной компоненты намагниченности, при этом переменное магнитное поле создают с помощью двух синхронных противофазных источников с градиентом, перпендикулярном плоскости образца, и устанавливают образец в положение, при котором смена знака фазы результирующего поля модуляции происходит в заданном слое образца.

Однако эти способы сложны и трудоемки. К тому же они применимы только для одноосных ферритовых пленок.

Известны магниторезонансные способы неразрушающего контроля намагниченности, основанные на измерении характеристик ферромагнитного резонанса ферритовых пленок. В частности, известен способ определения параметров эпитаксиальных магнитных плёнок (см., например, А.С. СССР №1649479, G01R 33/05, опубл. 15.05.91), заключающийся в определении амплитуды резонансного поглощения электромагнитной энергии магнитного поля и определении параметров плёнок из определённых математических выражений.

Однако этот способ позволяют измерять только усредненное значение намагниченности пленки.

Наиболее близким к заявляемому изобретению является спин-волновой способ неразрушающего контроля намагниченности ферритовых пленок, основанный на возбуждении дипольно-спиновых (магнитостатических) волн и измерении их дисперсионных характеристик (см., А.С. №1755220, G01R 33/05, опубл.15.08.92), при этом способ предусматривает одновременное воздействие постоянного магнитного поля и СВЧ магнитного поля на две параллельно расположенные области плёнки. Используя дисперсионное уравнение, получают значение намагниченности насыщения пленки.

Недостатком данного способа является отсутствие возможности анализа распределения намагниченности по толщине эпитаксиальной ферритовой пленки.

Проблема, на решение которой направлено изобретение, заключается в создании способа неразрушающего контроля ферритовых пленок с возможностью определения распределения намагниченности по толщине.

Техническим результатом изобретения является расширение функциональных возможностей за счет обеспечения определения распределения намагниченности по толщине пленки.

Указанная проблема достигается тем, что в способе неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке, включающем одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и определение намагниченности пленки расчетным путем, согласно решению, постоянное магнитное поле ориентируют по нормали к поверхности ферритовой пленки, воздействие СВЧ магнитным полем осуществляют в импульсном режиме, регулируя величину постоянного магнитного поля и/или частоту заполнения радиоимпульсов до возбуждения в ферритовой пленке радиоимпульсов обменных спиновых волн, бегущих вглубь ферритовой пленки и отражающихся от ее противоположной поверхности, измеряют время задержки отраженных эхоимпульсов обменных спиновых волн и соответствующие величины частоты заполнения радиоимпульса и постоянного магнитного поля , подставляют измеренные значения в уравнение для группового времени задержки обменных спиновых волн , где - дисперсионное выражение для волнового числа обменных спиновых волн, =2.83МГц/Э – гиромагнитное отношение, =3.5.10-11 см2 – постоянная неоднородного обмена, - функция распределения намагниченности насыщения по толщине ферритовой пленки, - координата толщины ферритовой пленки, - параметр распределения намагниченности насыщения по толщине ферритовой пленки, вычисляют значение параметра из уравнения группового времени задержки обменных спиновых волн, подставляют вычисленный параметр в формулу функции распределения намагниченности насыщения, строят график зависимости намагниченности насыщения по толщине ферритовой пленки .

Изобретение поясняется иллюстрациями, где:

- на фиг. 1 представлена схема измерительной установки для реализации заявляемого способа,

- на фиг. 2 – осциллограмма эхоимпульсов и результаты измерения относительного времени задержки обменной спиновой волны,

- на фиг. 3 – график зависимости времени задержки отраженных эхоимпульсов обменных спиновых волн от параметра распределения намагниченности насыщения по толщине ферритовой пленки,

- на фиг. 4 – график функции распределения намагниченности по толщине переходного слоя,

- на фиг.5 – результаты расчета дисперсии ОСВ пределах толщины переходного слоя,

- на фиг. 6 – получено значение рассчитанной фазовой и групповой скорости.

На иллюстрациях позициями обозначено:

1 – эпитаксиальная пленка железоиттриевого граната (ЖИГ);

2 – подложка гадолиний-галлиевого граната (ГГГ);

3 – закороченная на конце микрополосковая линия;

4 – ферритовый циркулятор;

5 – генератор радиоимпульсов;

6 – измерительный осциллограф.

Способ реализуется следующим образом.

В качестве зондирующей волны используется обменная спиновая волна (ОСВ), которая при нормальном намагничивании ферритовой пленки и при наложении однородного СВЧ магнитного поля возбуждается в тонком переходном слое на границе пленка-подложка, распространяется вглубь пленки и отражается от ее противоположной поверхности. В переходном слое отраженные волны частично преобразовываются в СВЧ сигнал, а частично отражаются вглубь ферритовой пленки. Эти процессы повторяются многократно. При импульсном возбуждении ОСВ это проявляется в виде серии задержанных эхоимпульсов, следующих с равными временными интервалами , пропорциональными длине пробега эхоимпульса ОСВ , где - толщина ферритовой пленки. Существенно, что при заданных значениях частоты и намагничивающего поля длина волны и, соответственно, скорость распространения излучаемых ОСВ существенно зависит от распределения намагниченности внутри переходного слоя.

В данном изобретении распределение намагниченности по толщине ферритовой пленки определяется по результатам измерения относительного времени задержки эхоимпульсов, которое может быть осуществлено, например, с помощью установки на фиг. 1.

Для расчета намагниченности в слое используется выражение группового времени задержки ОСВ на длине пробега эхоимпульса

, (1)

где

- (2)

дисперсионное выражение для волнового числа ОСВ, полученное из уравнения Ландау-Лифшица, записанного с учетом неоднородного обмена, - круговая частота, - напряженность постоянного намагничивающего поля, МГц/Э - гиромагнитное отношение, см2 - постоянная неоднородного обмена, - функция распределения намагниченности по толщине переходного слоя, которая согласно законам диффузии в твердых телах имеет экспоненциальный характер и записывается в виде

, (3)

где - намагниченность насыщения чистого феррита, - феноменологический параметр.

Параметр определяется в результате решения трансцендентного уравнения, которое получается при подстановке в выражение (1) фиксированных значений и , при которых была измерена задержка эхоимпульса . Подстановка в (3) найденного значения определяет функцию распределения намагниченности по толщине ферритовой пленки.

Ниже приведен пример реализации изобретения. Для наблюдения эффектов импульсного возбуждения обменной спиновой волны (ОСВ) использовалась эпитаксиальная пленка железоиттриевого граната (ЖИГ) 1, выращенная методом жидкофазной эпитаксии на немагнитной подложке гадолиний - галлиевого граната (ГГГ) 2. Предварительно пленка подвергалась химико-механической полировке на глубину 1-2 мкм. Конечная толщина пленки составляла мкм. Экспериментальный образец пленки ЖИГ был выполнен в виде диска диаметром 2.5мм. В качестве преобразователя ОСВ использовалась закороченная на конце микрополосковая линия (МПЛ) 3. Ширина МПЛ составляла 3.0 мм. Образец пленки вместе с преобразователем помещался в постоянное магнитное поле Э, ориентированное по нормали к поверхности пленки. На вход МПЛ 3 от генератора радиоимпульсов 5 через циркулятор 4 подавался радиоимпульс длительностью 20нс с частотой заполнения 3ГГц. С помощью осциллографа 6 измерялось время относительной задержки эхоимпульсов ОСВ.

Осциллограмма эхоимпульсов и результаты измерения относительного времени задержки ОСВ представлены на фиг.2.

Учитывая, что толщина пленки составляла , нетрудно было посчитать групповую скорость ОСВ . В нашем случае она составляла , что на порядок меньше скорости звука в ЖИГ.

Обработка результатов измерений проводилась по следующей методике. В формулу (1) подставлялись фиксированные значения =3 ГГц и =2350 Э, проводился расчет зависимости . Расчеты проводились численными методами. По результатам вычислений строился график зависимости , представленный на фиг.3. По графику фиг.3 определялось значение параметра =82093 см-1, которое соответствовало измеренному времени задержки эхоимпульсов =49.45нс. Найденное значение подставлялось в формулу (3), рассчитывалась функция распределения намагниченности по толщине переходного слоя , график которой представлен на фиг.4.

Аналогично при подстановке в (2) фиксированного значения =2350 Э и найденного значения параметра рассчитывался закон дисперсии ОСВ . На графике фиг.5 представлены результаты расчета дисперсии ОСВ пределах толщины переходного слоя.

Видно, что в переходном слое волновые числа ОСВ возрастают от нуля до максимального значения, характерного для пленки чистого ЖИГ на заданной частоте .

Для сравнения на фиг.6 представлены графики частотной зависимости групповой и фазовой скоростей, рассчитанные вдали от переходного слоя.

Из графика фиг.6 было получено значение рассчитанной групповой скорости =5.37⋅104 см/с, которое с точностью 99% совпадало с =5.31⋅104 см/с, измеренным по задержке эхоимпульсов на фиг.2.


СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ПО ТОЛЩИНЕ ФЕРРИТОВОЙ ПЛЁНКИ
Источник поступления информации: Роспатент

Showing 21-30 of 90 items.
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.fdf3

Способ наблюдения жировой ткани

Группа изобретений относится к медицине, а именно к хирургии, и касается визуализации кровеносного сосуда в жировой ткани во время операции на этапе удаления этой ткани. Для этого предложены варианты способа исследования жировой ткани. При осуществлении первого варианта способа на жировую ткань...
Тип: Изобретение
Номер охранного документа: 0002638642
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.0eee

Биосенсор для неинвазивного оптического мониторинга патологии биологических тканей

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с...
Тип: Изобретение
Номер охранного документа: 0002633494
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1022

Способ оценки скорости осадконакопления

Изобретение относится к области геологии и может быть использовано для оценки скорости осадконакопления карбонатных отложений. Сущность: измеряют магнитную восприимчивость карбонатных пород на разных стратиграфических уровнях или участках разреза. Строят графики или карты значений, обратных...
Тип: Изобретение
Номер охранного документа: 0002633659
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1035

Устройство для дозированного вскрытия микрокапсул

Использование: для хранения микрокапсул с ЛВ и их дозированного вскрытия. Сущность изобретения заключается в том, что устройство для дозированного вскрытия микрокапсул содержит подложку и, по крайней мере, одну лунку для микрокапсулы, по крайней мере, один первый электропроводный слой,...
Тип: Изобретение
Номер охранного документа: 0002633655
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
Showing 1-5 of 5 items.
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
27.09.2015
№216.013.7e13

Разнесенная радиолокационная станция со сторонним подсветом сетей сотовой связи стандарта gsm

Изобретение относится к области разнесенной радиолокации. Техническим результатом является увеличение дальности и постоянства показателей обнаружения целей полуактивной разнесенной радиолокационной станцией (РЛС) со сторонним подсветом, создаваемым базовой станцией стандарта GSM, за счет...
Тип: Изобретение
Номер охранного документа: 0002563872
Дата охранного документа: 27.09.2015
13.02.2019
№219.016.b99b

Однокомпонентный сенсор геомагнитных полей

Изобретение относится к устройствам для проведения векторных измерений слабых геомагнитных полей. Однокомпонентный сенсор геомагнитных полей содержит три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты, одноименные полюсы которых присоединены...
Тип: Изобретение
Номер охранного документа: 0002679461
Дата охранного документа: 11.02.2019
12.07.2019
№219.017.b2ff

Способ регуляризованного обнаружения полезных радиосигналов

Изобретение относится к области радиотехники и может быть использовано в системах загоризонтной радиолокации (ЗГРЛ), радиозондирования и радиопеленгации. Достигаемый технический результат – повышение надежности загоризонтного обнаружения местоположения и параметров движения цели - объектов...
Тип: Изобретение
Номер охранного документа: 0002694235
Дата охранного документа: 10.07.2019
23.05.2020
№220.018.202d

Способ определения интервалов относительной стационарности сигналов ионосферно-пространственного распространения радиоволн

Изобретение относится к области радиотехники, конкретно к способу определения в реальном времени текущих интервалов относительной стационарности сигналов загоризонтной радиолокации и предназначено для обеспечения адаптации систем загоризонтной радиолокации методом оперативных измерений текущих...
Тип: Изобретение
Номер охранного документа: 0002721622
Дата охранного документа: 21.05.2020
+ добавить свой РИД