×
18.12.2019
219.017.ee4c

Способ производства проката для изготовления труб категории прочности К48-К56, стойких к сероводородному растрескиванию и общей коррозии, и труба, выполненная из него

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области металлургии. Для получения листового проката и труб с повышенными показателями сопротивления водородному и сероводородному растрескиванию под напряжением, стойкости к общей коррозии, а также низкотемпературной вязкостью с температурой вязкохрупкого перехода (Т) менее -40°С, величиной ударной вязкости (KCV) более 250 Дж/см способ производства проката включает выплавку стали, внепечную обработку с использованием средств вакуумирования с обеспечением содержания водорода в стали не более 2 ppm, непрерывную разливку стали на слябы, нагрев слябов до температуры 1150-1250°С, предварительную и окончательную прокатку с ускоренным охлаждением. Сталь содержит, мас. %: С 0,02-0,08, Mn 0,30-1,2, Si 0,10-0,70, Nb 0,005-0,09, Al 0,025-0,045, Ti 0,01-0,023, Ni 0,01-0,3, Cu≤0,3, Cr≤1,0, N≤0,0045, S≤0,0015, P≤0,010, V≤0,10, Ca 0,0005-0,006, Ba 0,0005-0,006, железо и неизбежные примеси - остальное при выполнении соотношений 10×С+Mn+(1-10×Nb)=2±0,4, а также Ca/S=1,5÷2,5. Коэффициент ликвации не превышает 1,5. Нагретые слябы подвергают прокатке в 2-4 стадии, при этом суммарное обжатие слябов на предварительной стадии составляет 40-70% при кратности получаемого подката относительно толщины готового проката, равной 3,2-5,2, а параметры прокатки в окончательной стадии определяют в зависимости от содержания в стали хрома. Полученный прокат толщиной от 9,0 мм до 30,0 мм ускоренно охлаждают до 350-650°С со скоростью 10-30°С/с, после чего листы толщиной от 12 мм и более охлаждают на участке замедленного охлаждения, а листы толщиной менее 12 мм охлаждают на спокойном воздухе. 2 н. и 3 з.п. ф-лы, 6 табл.
Реферат Свернуть Развернуть

Изобретение относится к металлургии, в частности к производству проката из низколегированной стали и электросварных труб большого диаметра классов прочности К48-К56, стойких к сероводородному растрескиванию и общей коррозии.

К сталям, стойким к сероводородному растрескиванию, предъявляются высокие требования по хладостойкости - обеспечение высокой ударной вязкости при температурах до -60°С и доли вязкой составляющей в изломе образца после испытаний падающим грузом на уровне 70-80% при температурах до -20°С. С целью достижения комплекса прочностных характеристик и хладостойкости проката трубных марок сталей требуется применение микролегирующих элементов (Nb, Ti), а также повышенной концентрации в стали марганца и углерода и использование классической технологии контролируемой прокатки, обеспечивающей формирование протяженных межфазовых границ.

Известен способ производства коррозионностойких горячекатаных листов толщиной 12-21 мм из низколегированной стали с пределом прочности от 510 до 550 МПа, включающий аустенизацию непрерывнолитой заготовки при температуре 1190-1230°С, черновую прокатку при температуре не ниже 960°С на толщину, составляющую не менее 5,5 толщины готового листа с относительными обжатиями за проход не менее 10%, подстуживание раската, чистовую прокатку, начинаемую для листа конечной толщины до 16 мм включительно при температуре 900-930°С, а для листа конечной толщины более 16 мм - при температуре 870-900°С и завершаемую для листа конечной толщины до 16 мм включительно при температуре 880±10°С, а для листа конечной толщины более 16 мм - при температуре 850±10°С, ускоренное охлаждение листов до температуры 430-470°С со скоростью не менее 20°С/с и последующее их замедленное охлаждение в стопе (патент РФ 2581696, 20.04.2016). При этом сталь имеет следующий состав, мас. %:

углерод 0,04-0,070
кремний 0,20-0,30
марганец 0,90-1,10
хром 0,20-0,30
никель не более 0,25
медь не более 0,25
молибден не более 0,35
титан 0,004-0,009
ванадий не более 0,06
ниобий 0,02-0,035
азот не более 0,007
алюминий 0,02-0,04
сера не более 0,001
фосфор не более 0,010
железо и примеси остальное

Вместе с этим суммарное содержание Cr+Ni+Cu не превышает 0,70%, углеродный эквивалент Сэ≤0,40%, параметр стойкости против растрескивания при сварке Pcm≤0,21%.

Недостатками этого технического решения являются недостаточно высокая прочность и хладостойкость проката в сочетании со стойкостью к сероводородному растрескиванию и ограничение по максимальной толщине проката.

Наиболее близким аналогом по совокупности признаков и достигаемому результату к предлагаемому изобретению, выбранный за прототип, является способ производства толстолистового проката для изготовления сероводородостойких электросварных газонефтепроводных труб большого диаметра категории прочности Х42-Х56. Последний включает выплавку, внепечную обработку жидкой стали с обеспечением содержания водорода в стали не более 2 ppm, непрерывную разливку на слябы, нагрев слябов до температуры 1150-1250°С, предварительную деформацию слябов, осуществляемую при температуре 1000-1150°C с суммарным обжатием 50-70% в три стадии (суммарное обжатие 10-25% в продольном направлении относительно оси сляба, суммарное обжатие 20-35% в поперечном направлении относительно оси сляба, суммарное обжатие 40-70% с величиной частного обжатия не менее 15% в продольном направлении относительно оси сляба), окончательную деформацию с суммарным обжатием 60-80% в интервале температур от 950°С до Ar3+(30-50)°С, ускоренное охлаждение листов до температур 400-550°С со скоростью 15-35°С/с, причем охлаждение листов толщиной до 20 мм осуществляют на спокойном воздухе со скоростью 0,05-0,15°С/с, а листов большей толщины - в стопе со скоростью 0,0015-0,0035°С/с (патент РФ 2653954, 15.05.2018). При этом сталь имеет следующий химический состав, мас. %:

углерод 0,04-0,08
марганец 0,8-1,3
кремний 0,10-0,35
ниобий 0,02-0,06
ванадий 0,005-0,05
молибден 0,01-0,02
алюминий 0,015-0,05
титан 0,005-0,025
никель 0,01-0,5
медь 0,1-0,5
хром 0,01-0,5
азот 0,004-0,012
сера не более 0,002
фосфор не более 0,015
кальций 0,0005-0,005
железо, неизбежные примеси и водород остальное

Вместе с этим обеспечивается выполнение соотношения Ca/S=1,0÷2,0, величина углеродного эквивалента Сэкв, рассчитываемого по формуле Сэкв=C+Mn/6+(Cr+(Nb+Ti)/15+(Cu+Ni)/15, составляет не более 0,38, параметр стойкости против растрескивания Pcm, рассчитываемый по формуле Pcm=C+(Mn+Cr+Cu)/20+Si/30+Ni/15, составляет не более 0,21, суммарное содержание Nb и Ti в стали не более 0,06 мас. %, суммарное содержание в стали Cr, Ni и Cu - не более 0,6 мас. %.

Недостатком данного технического решения является недостаточно высокий уровень прочности и хладостойкости в сочетании с требованиями по сопротивлению водородному и сероводородному растрескиванию под напряжением, а также низкий уровень стойкости к общей коррозии и недостаточная стойкость к образованию блистерингов при проведении испытаний на водородное растрескивание.

Согласно предлагаемому изобретению листовой прокат для изготовления хладостойких газонефтепроводных труб классов прочности К48-К56, предназначенных для транспортировки сероводородсодержащих углеводородов, должен отвечать следующему комплексу свойств:

- для класса прочности К48 - временное сопротивление разрыву (σв) не менее 470 МПа, предел текучести (σт) не менее 350 МПа;

- для класса прочности К50 - σв не менее 500 МПа, σт не менее 370 МПа;

- для класса прочности К52 - σв не менее 510 МПа и σт не менее 380 МПа;

- для класса прочности К56 - σв не менее 550 МПа и σт не менее 410 МПа.

При этом показатели испытаний на стойкость к растрескиванию, инициированному водородом, в соответствии с NACE ТМ0284, должны соответствовать следующим значениям:

- коэффициент длины трещин CLR не более 3,0%;

- коэффициент толщины трещин CTR, равный 0%;

- коэффициент чувствительности к растрескиванию CSR, равный 0%.

Вместе с этим при испытаниях на сульфидное коррозионное растрескивание в соответствии с NACE ТМ0177 должно обеспечиваться отсутствие дефектов в образце, испытываемом при приложении к нему напряжения величиной 80% от σт в течение 720 часов.

Кроме того, одним из требований к прокату, предназначенному для производства труб для транспортировки нефти, является стойкость к общей коррозии, скорость которой не должна превышать 0,5 мм/год в среде, содержащей 5% NaCl и 400-500 мг/л H2S.

Техническим результатом данного изобретения является получение листового проката и труб категории прочности К48-К56 с повышенными показателями сопротивления водородному и сероводородному растрескиванию под напряжением, стойкости к общей коррозии, а также низкотемпературной вязкостью с температурой вязкохрупкого перехода (Т50) менее -40°С, величиной ударной вязкости (KCV-40) более 250 Дж/см2.

Указанный технический результат достигается тем, что в способе производства листового проката, включающем выплавку стали, внепечную обработку с использованием средств вакуумирования с обеспечением содержания водорода в стали не более 2 ppm, непрерывную разливку стали на слябы, нагрев слябов до температуры 1150-1250°С, предварительную и окончательную прокатку с ускоренным охлаждением, согласно изобретению прокат производят из стали следующего химического состава, мас. %:

углерод 0,02-0,08
марганец 0,3-1,2
кремний 0,10-0,7
ниобий 0,005-0,09
алюминий 0,025-0,045
титан 0,01-0,023
никель 0,01-0,3
медь не более 0,3
хром не более 1,0
азот не более 0,0045
сера не более 0,0015
фосфор не более 0,010
ванадий не более 0,10
кальций 0,0005-0,006
барий 0,0005-0,006
железо и неизбежные примеси остальное

при выполнении следующих соотношений:

10×C+Mn+(1-10×Nb)=2±0,4, где С, Mn, Nb - содержание в стали соответствующих химических элементов, мас. %;

Ca/S=1,5÷2,5, где Са, S - содержание в стали соответствующих химических элементов, мас. %;

Сталь разливается непрерывным способом в слябы толщиной 200-355 мм коэффициент ликвации K, определяемый из соотношения K=(СО×MnO)/(СП×MnП), где СО и СП, MnO и MnП - содержание углерода и марганца в стали соответственно в осевой и поверхностной зоне сляба, мас. %, составляет не более 1,5.

Деформация нагретых слябов осуществляется в 2-4 стадии с суммарным обжатием слябов на предварительной стадии прокатки 40-70% и кратностью получаемого подката относительно толщины готового проката, равной 3,2-5,2.

Параметры прокатки в окончательной стадии, а именно температура начала прокатки (ТНП, °С) и температура завершения прокатки (ТКП, °С), а также температура начала охлаждения проката (ТНО, °С) определяются в зависимости от содержания в стали хрома (Cr, мас. %), при этом

если Cr≤0,55, то используются следующие формулы:

ТНП=(Ае3+312-(12,2÷15,8)×h)±30,

ТКП=(Ае3+51-(2,3÷2,8)×h)±30,

ТНО=(Ае3-110+(1,7÷2,7)×h)±30,

где Ае3 - температура начала ферритного превращения, °С

h - толщина готового проката, мм,

а при Cr>0,55, используются следующие формулы:

ТНП=(Ае3+360-(18,7÷20,1)×h)±40,

ТКП=(Ае3+150-(8,7÷9,4)×h)±30,

ТНО=(Ae3-120+(0,5÷0,8)×h)±30,

Далее прокат толщиной от 9,0 до 30,0 мм ускоренно охлаждается до температуры 350-650°С со скоростью 10-30°С/с, после чего листы толщиной от 12 мм и более охлаждаются на участке замедленного охлаждения, а листы толщиной менее 12 мм охлаждаются на спокойном воздухе.

Кроме того, в случае производства проката для труб, предназначенных для транспортировки нефти, величина углеродного эквивалента Сэкв ограничивается значением не более 0,40 мас. %, величина параметра стойкости против растрескивания Pcm ограничивается значением не более 0,24 мас. %, при суммарном содержании в стали ниобия и титана не более 0,06 мас. % и суммарном содержании в стали хрома, никеля и меди не более 1,4 мас. %. В случае производства проката для труб, предназначенных для транспортировки газа, величина Сэкв ограничивается значением не более 0,38 мас. %, величина Pcm ограничивается значением не боле 0,21 мас. %, при суммарном содержании в стали ниобия и титана не более 0,10 мас. % и суммарном содержании в стали хрома, никеля и меди не более 0,6 мас. %. При этом Сэкв и Pcm для обоих случаев рассчитываются по следующим формулам:

Cэкв=C+Mn/6+(Cr+Mo+V+Nb+Ti)/5+(Ni+Cu)/15,

Pcm=C+(Mn+Cr+Cu)/20+Si/30+Ni/60+Mo/15+V/10+5В,

где С, Mn, Cr, Mo, V, Nb, Ti, Ni, Cu, Si, В - содержание в стали соответствующих химических элементов, мас. %

Представленные ограничения по содержанию химических элементов, описанные требования к выплавке стали позволяют обеспечивать достижение требований при испытаниях на растрескивание, инициированное водородом, а также стойкость к коррозионному растрескиванию под напряжением. Дополнительное легирование медью, никелем и хромом способствует обеспечению низкой скорости общей коррозии и позволяет повысить прочность проката.

Соблюдение температурных режимов прокатки в установленных рамках за счет контролируемой степени наклепа аустенитного зерна обеспечивает формирование необходимого класса прочности и высокого уровня хладостойкости без ухудшения стойкости к водородному растрескиванию и сульфидному коррозионному растрескиванию под напряжением. Ограничение по температуре начала охлаждения также связано с обеспечением формирования структуры листового проката, состоящей преимущественно из квазиполигонального феррита и бейнита.

Трубы, изготовленные из данного листового проката, характеризуются высоким уровнем хладостойкости, стойкости к водородному растрескиванию и сульфидному коррозионному растрескиванию под напряжением в сочетании с низкой скоростью общей коррозии как основного металла, так и сварного соединения.

Пример осуществления способа.

Выплавка стали произведена в кислородном конвертере. После выпуска проведена обработка металла в ковше на участке внепечной обработки стали, включающей раскисление, легирование, дегазацию, рафинировку и модифицирование кальцием и силикобарием, а также вакуумирование стали. Разливка жидкой стали проведена на МНЛ3. Химический состав стали представлен в таблице 1.

Прокатка слябов размером 200÷355×1500÷1950×2700÷3870 мм на листы толщиной 9,0, 18,0, 28,0 и 30,0 мм произведена на одноклетьевом реверсивном стане «5000». Нагрев слябов под прокатку произведен до температур 1170±10°С для листов толщиной 28,0 и 30,0 мм и 1200±10°С для листов толщиной 9,0 и 18,0 мм. Предварительная деформация осуществлялась с суммарным обжатием 40-70% в 1÷3 стадии. Кратность подката перед окончательной стадией составляла 4,4 для листов толщиной 9,0 и 18,0 мм, 3,7 - для листов толщиной 28,0 и 30,0 мм. Окончательная деформация осуществлялась за 5-13 проходов в интервале температур, определенном по описанным выше формулам, аналогично определена температура начала ускоренного охлаждения, произведенного сразу после окончательной стадии прокатки со скоростью 10-15°С/с до температур 450÷650°С. Далее листы толщиной 9,0 мм охлаждали на спокойном воздухе, листы толщиной 18,0, 28,0 и 30,0 мм охлаждались в стопах на участке замедленного охлаждения.

Технологические параметры прокатки и комплекс достигнутых характеристик проката представлены в таблицах 2 и 3. Комплекс характеристик основного металла труб, изготовленных из данного проката, соответствует свойствам проката, коррозионные и механические характеристики представлены в таблице 4.

В таблицах 5 и 6 представлены параметры производства проката с отклонениями от указанных ограничений.

Представленные результаты испытаний подтверждают, что предложенный способ производства позволяет получить прокат и трубы классов прочности К48-К56 с обеспечением высокого уровня хладостойкости, сопротивления водородному и сероводородному растрескиванию и низкой скоростью общей коррозии.

Источник поступления информации: Роспатент

Showing 1-10 of 23 items.
20.04.2015
№216.013.4474

Способ горячей винтовой раскатки гильз и технологический инструмент для его осуществления

Группа изобретений относится к обработке металлов давлением, а именно к изготовлению горячекатаных труб. Способ включает формоизменение металла в очаге деформации, образованном рабочими валками и короткой оправкой, смонтированной на полом водоохлаждаемом изнутри справочном стержне. Увеличение...
Тип: Изобретение
Номер охранного документа: 0002549022
Дата охранного документа: 20.04.2015
12.01.2017
№217.015.5c24

Цельнокатаное железнодорожное колесо для использования с дисковыми тормозами

Железнодорожное колесо включает в себя обод, состоящий из поверхности катания, гребня и боковых поверхностей, ограниченных внутренними диаметрами обода с наружной и внутренней сторон, ступицу и диск, образованные наружной и внутренней поверхностями, симметричными относительно теоретической...
Тип: Изобретение
Номер охранного документа: 0002589814
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.acaa

Устройство для охлаждения обода при термоупрочнении железнодорожных колёс

Изобретение относится к металлургии, а именно к оборудованию для термической обработки железнодорожных колес, и может быть использовано в черной металлургии и машиностроении в линиях термической обработки колес. Устройство содержит 2 опорных ролика, 2 поддерживающих ролика и размещенные между...
Тип: Изобретение
Номер охранного документа: 0002612479
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b2af

Способ многодуговой сварки металлических изделий под слоем флюса

Изобретение относится к области технологии многодуговой сварки металлических изделий под слоем флюса. Сварочную ванну сварного соединения заполняют последовательными электродами. Ультразвуковые колебания в сварочную ванну подают на один из сварочных электродов при степени заполнении объема...
Тип: Изобретение
Номер охранного документа: 0002613831
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b908

Сталь и цельнокатаное колесо, изготовленное из неё

Изобретение относится к области металлургии, а именно к составу стали для изготовления высокопрочных цельнокатаных колес для железнодорожного транспорта. Сталь содержит следующие компоненты, мас.%: углерод 0,73-0,77, кремний 0,30-0,50, хром не более 0,25, ванадий от более 0,1 до 0,15, сера...
Тип: Изобретение
Номер охранного документа: 0002615425
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.be27

Способ термической обработки цельнокатаных железнодорожных колёс из легированной стали

Изобретение относится к технологии обработки высоконагружаемых железнодорожных колес и может быть использовано для упрочняющей термической обработки цельнокатаных железнодорожных колес различной формы. Способ включает нагрев до температуры аустенизации, выдержку при этой температуре,...
Тип: Изобретение
Номер охранного документа: 0002616756
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.dce8

Дисперсионно-твердеющая перлитная колесная сталь

Изобретение относится к области металлургии, а именно к перлитным дисперсионно-твердеющим сталям, используемым для изготовления железнодорожных колес. Сталь содержит, мас.%: углерод 0,55-0,75, кремний 0,25-0,65, марганец 0,30-0,82, медь 0,36-1,40, хром - не более 0,1, фосфор - не более 0,030,...
Тип: Изобретение
Номер охранного документа: 0002624583
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.ea65

Цельнокатаное железнодорожное колесо

Изобретение относится к транспортному машиностроению, в частности к конструкции железнодорожного колеса, которое включает в себя обод, состоящий из поверхности катания, гребня и боковых поверхностей, ограниченных внутренним диаметром обода с наружной и внутренней стороны, ступицу и диск,...
Тип: Изобретение
Номер охранного документа: 0002628025
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.0bac

Способ термической обработки цельнокатаных железнодорожных колес

Изобретение относится к области термической обработки. Для повышения конструктивной и усталостной прочности цельнокатаных железнодорожных колес за счет повышения одновременно прочностных, пластических и вязких характеристик металла их дисков, уровня сжимающих напряжений в колесе осуществляют...
Тип: Изобретение
Номер охранного документа: 0002632507
Дата охранного документа: 05.10.2017
19.01.2018
№218.016.0bd5

Способ электродуговой многоэлектродной сварки под слоем флюса продольных стыков толстостенных труб большого диаметра

Изобретение может быть использовано при производстве толстостенных сварных труб большого диаметра с использованием многоэлектродной сварки под слоем флюса. В зоне окончания кристаллизации ванны расплавленного металла осуществляют удаление расплавленного флюса. Принудительное охлаждение...
Тип: Изобретение
Номер охранного документа: 0002632496
Дата охранного документа: 05.10.2017
Showing 1-10 of 10 items.
20.04.2015
№216.013.428e

Способ производства толстолистового проката классов прочности к52-к60, х52-х70, l360-l485 для изготовления электросварных труб магистральных трубопроводов

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов. Способ включает получение...
Тип: Изобретение
Номер охранного документа: 0002548536
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4474

Способ горячей винтовой раскатки гильз и технологический инструмент для его осуществления

Группа изобретений относится к обработке металлов давлением, а именно к изготовлению горячекатаных труб. Способ включает формоизменение металла в очаге деформации, образованном рабочими валками и короткой оправкой, смонтированной на полом водоохлаждаемом изнутри справочном стержне. Увеличение...
Тип: Изобретение
Номер охранного документа: 0002549022
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4475

Способ производства толстолистового проката классов прочности к65, х80, l555 для изготовления электросварных труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству на реверсивном толстолистовом стане листового проката толщиной 15-34 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм. Способ производства толстолистового проката для изготовления электросварных...
Тип: Изобретение
Номер охранного документа: 0002549023
Дата охранного документа: 20.04.2015
20.01.2018
№218.016.15b0

Способ производства толстолистового проката классов прочности k80, x100, l690 для изготовления электросварных труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству проката толщиной 14-31 мм для изготовления труб магистральных трубопроводов. Для обеспечения требований по прочностным, пластическим и вязким свойствам, характерным для проката прочности К80, Х100, L690, получают сталь,...
Тип: Изобретение
Номер охранного документа: 0002635122
Дата охранного документа: 09.11.2017
29.05.2018
№218.016.5427

Способ производства толстолистового проката с повышенной деформационной способностью, толстолистовой прокат

Изобретение относится к области металлургии, в частности для производства толстолистового проката. Для повышения деформационной способности проката, хладостойкости за счет создания феррито-мартенсито/бейнитной структуры способ включает получение непрерывнолитой заготовки из стали, содержащей,...
Тип: Изобретение
Номер охранного документа: 0002654121
Дата охранного документа: 16.05.2018
10.08.2019
№219.017.bda6

Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости

Изобретение относится к области металлургии, в частности к производству листового проката толщиной 12-48 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм с обеспечением доли вязкой, составляющей в изломе образцов при испытаниях падающим грузом не менее 85% при...
Тип: Изобретение
Номер охранного документа: 0002696920
Дата охранного документа: 07.08.2019
18.12.2019
№219.017.ee1a

Способ производства толстолистового проката с повышенной деформационной способностью (варианты)

Изобретение относится к области металлургии, в частности к производству горячекатаного проката толщиной от 7 до 50 мм. Для обеспечения повышенной деформационной способности проката класса прочности К60-К65 при сохранении его высокой ударной вязкости и хладостойкости осуществляют...
Тип: Изобретение
Номер охранного документа: 0002709071
Дата охранного документа: 13.12.2019
21.01.2020
№220.017.f793

Способ производства толстолистового проката для изготовления электросварных труб подводных трубопроводов

Изобретение относится к области металлургии, в частности к производству толстолистового проката толщиной до 45 мм. Для обеспечения высокого уровня механических свойств проката категории прочности Х65-Х70, количества вязкой составляющей при температуре от -10 до -30°С не менее 85% и...
Тип: Изобретение
Номер охранного документа: 0002711271
Дата охранного документа: 16.01.2020
15.02.2020
№220.018.02e2

Способ изготовления стальных двухслойных горячекатаных листов

Изобретение относится к области металлургии, в частности к производству стальных листов, состоящих из основного слоя и плакирующего слоя из коррозионно-стойкой стали, предназначенных для изготовления труб большого диаметра, оборудования нефтеперерабатывающей, химической промышленности, а также...
Тип: Изобретение
Номер охранного документа: 0002714150
Дата охранного документа: 12.02.2020
20.02.2020
№220.018.03e8

Способ производства толстолистового проката с повышенной хладостойкостью для изготовления электросварных труб и сварных конструкций

Изобретение относится к области производства на реверсивном толстолистовом стане листового проката, преимущественно толщиной до 40 мм, с повышенной хладостойкостью для изготовления электросварных труб и сварных конструкций. Способ включает нагрев заготовки выше температуры Ас, дробную...
Тип: Изобретение
Номер охранного документа: 0002714566
Дата охранного документа: 18.02.2020
+ добавить свой РИД