×
14.12.2019
219.017.edf0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОЛОКОННЫХ СБОРОК НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКИХ ИНФРАКРАСНЫХ СВЕТОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится для применений в различных областях специальной волоконной оптики на основе инфракрасных (ИК) волоконных сборок, изготовленных из фото- и радиационно-стойких световодов новой системы AgBr – (TlBrI). Способ получения волоконных сборок на основе поликристаллических инфракрасных световодов, включающий их упаковку в сборку, отличающийся тем, что световоды поликристаллической структуры выполняют из монокристаллов системы AgBr – (TlBrI) путем вырезания заготовки диаметром 13,0–15,0 мм, высотой 24,0–34,0 мм. Затем методом экструзии изготавливают однослойную заготовку с величиной зерна 700,0–800,0 нм, диаметром 3,0 мм, длиной 645,0±5 мм и вторично экструдируют для получения нанокристаллического световода с размером зерна 70,0–80,0 нм, диаметром 90,0 мкм, длиной 675,0±1 м, который разрезают на световоды длиной 4,0–5,0 м, и механической укладкой из 7; 37; 91 световода формируют сборки гексагональной формы с последующим их уплотнением, при этом диаметр сборок составляет 210; 630; 990 мкм, причем световоды содержат ингредиенты при следующем соотношении, мас. %: бромид серебра 95,0–60,0; твердый раствор TlBrI 5,0–40,0. Технический результат – повышение пространственного и температурного разрешения волоконных сборок.

Изобретение относится для применений в различных областях специальной волоконной оптики на основе инфракрасных (ИК) волоконных сборок, изготовленных из фото- и радиационно-стойких световодов новой системы AgBr – (TlBr0,46I0,54), где твердые растворы TlBr0,46I0,54 являются кристаллами КРС-5 и соответствуют минимальной температуре плавления и составу на диаграмме плавкости галогенидов одновалентного таллия системы TlBr – TlI. Радиационно-стойкие ИК волоконные сборки востребованы для космических исследований, атомной энергетики, экологического мониторинга, в том числе в условиях повышенной радиации, а также для ИК диагностики теплового состояния ветряных электрических станций.

Первые работы посвященные способам получения ИК волоконных сборок представлены в работах [I. Paiss, F. Moser, A. Katzir. Properties of silver halide core–clad fibers and the use of fiber bundle for thermal imaging. Fiber and Integrated Optics. – 1991. – Vol. 10. – P. 275–290; I. Paiss, A. Katzir. Thermal imaging by ordered bundles of silver halide crystalline fibers. Applied Physics Letters. – 1992. – Vol. 61. – P. 1384–1386] и продолжены в течении 10 – 15 лет [E. Rave, D. Shemesh, A. Katzir. Thermal imaging through ordered bundles of infrared–transmitting silver–halide fibers. Applied Physics Letters. – 2000. – Vol. 76, № 14. – P. 1795–1797; E. Rave, L. Nagli, A. Katzir. Ordered bundles of infrared–transmitting AgClBr fibers: optical characterization of individual fibers. Optics Letters. – 2000. – Vol. 25, № 17. – P. 1237–1239; E. Rave, A. Katzir. Ordered bundles of infrared transmitting silver halide fibers: attenuation, resolution and crosstalk in long and flexible bundles. Optical Engineering. – 2002. – Vol. 41, № 7. – P. 1467–1468]. Все описанные технологии изготовления сборок заключаются в следующем: на первом этапе методом экструзии «штабик в трубке» получают из монокристаллов твердых растворов системы AgCl – AgBr двуслойные световоды, которые гексагонально укладывают в трубку из AgCl, снова экструдируют, затем нарезают на сегменты, экструдируют и процесс повторяют несколько раз с целью получения волоконных сборок общим диаметром 0,7, 0,9 и 2,0 мм на основе волокон диаметром от 25,0 до 100,0 мкм и более. С помощью тепловизора показана возможность сборок передачи теплового изображения.

Но высокие оптические потери на длине волны 10,6 мкм (до 192 дБ/м), низкое температурное разрешение, высокие перекрестные помехи (до 45 % и более) связаны с избыточным рассеянием на границе волокна и матрицы, а также с ИК излучением, которое передается оболочкой двухслойного волокна. Поэтому волоконные сборки, изготовленные такими способами, для практического использования не применимы. Кроме того, в условиях повышенной радиации волоконные сборки на основе системы AgCl – AgBr не используются, вследствие их светочувствительности.

Наиболее близким техническим решением являются волоконные сборки, изготовленные из специальных волокон и предназначенные для широкого спектра длин волн [V. Artyushenko, C. Wojciechowscki, J. Ingram, V. Kononenko, V. Lobachev, T. Sakharova, J. Ludczak, A. Grzebieniak, Z. Wojciechowski. Specialty fibers for broad spectra of wavelength and power. Proceeding of SPIE – The International Society for Optical Engineering. Vol. 5951, 2005. Номер статьи 595103, Pages 1-8]. Авторы предложили объединить кварцевые, халькогенидные и поликристаллические галогенидсеребряные световоды в одну волоконную сборку для большего охвата спектра. Спектральный диапазон передачи этих трех типов световодов составляет от 0,2 до 18,0 мкм. Кварцевые световоды предназначены для работы в диапазоне от 0,2 до 2,0 мкм, халькогенидные – от 2,0 до 6,0 мкм, а поликристаллические инфракрасные световоды (PIR) на основе кристаллов твердых растворов системы AgCl – AgBr в диапазоне от 5,0 до 18,0 мкм. В статье теоретически рассматривается длина сборки до 20 м, однако нет конкретной информации о том, что такая длина была достигнута. Не даны и составы ИК волокон, режимы их изготовления, в частности поликристаллических галогенидсеребряных (PIR), а относительно способа изготовления волоконных сборок на основе (PIR) сказано только, что сетчатая сборка с квадратной укладкой волокон переходит в линейную сборку.

Кроме того, для отображения интенсивности излучения использованы относительные единицы, что не информативно, так как по графику можно судить только о диапазоне пропускания, но не об его величине, а также данные сборки светочувствительны и не устойчивы к фото- и радиационному (бета) излучению. Не приведены основные оптические и механические свойства сборок: оптические потери, перекрестные помехи, радиус изгиба, пространственное и температурное разрешение.

Существует проблема по разработке гибких фото- и радиационно-стойких волоконных сборок высокого разрешения на основе наномодифицированных поликристаллических галогенидсеребряных световодов, прозрачных в среднем инфракрасном диапазоне, обладающих малыми оптическими потерями и перекрестными помехами, а также эффективными пространственными и температурными разрешениями.

Решение проблемы достигается тем, что в способе получения волоконных сборок на основе поликристаллических инфракрасных световодов, включающем их упаковку в сборку, отличающимся тем, что световоды поликристаллической структуры выполняют из монокристаллов системы AgBr – (TlBr0,46I0,54) путем вырезания заготовки диаметром 13,0 – 15,0 мм, выстой 24,0 – 34,0 мм, затем методом экструзии изготавливают однослойную заготовку с величиной зерна 700,0 – 800,0 нм, диаметром 3,0 мм, длиной 645,0 ± 5 мм и вторично экструдируют для получения нанокристаллического световода с размером зерна 70,0 – 80,0 нм, диаметром 90,0 мкм, длиной 675,0 ± 1 м, который разрезают на световоды длиной 4,0 – 5,0 м, и механической укладкой из 7; 37; 91 световода формируют сборки гексагональной формы с последующим их уплотнением, при этом диаметр сборок составляет 210; 630; 990 мкм, причем, световоды содержат ингредиенты при следующем соотношении в мас. %:

бромид серебра 95,0 – 60,0;
твердый раствор TlBr0,46I0,54 5,0 – 40,0.

Сущность изобретения состоит в том, что из фото-и радиационно-стойких монокристаллов системы AgBr – (TlBr0,46I0,54) вырезают заготовку, из нее методом экструзии изготавливают поликристаллическую заготовку (размер зерна 700,0 – 800,0 нм) диаметром 3,0 мм и снова осуществляют процесс экструзии для получения световодов уже нанокристаллической структуры (размер зерна 70,0 – 80,0 нм) диаметром 90 мкм и длиной 675 ± 1 м, который разрезают на отрезки длиной от 4,0 до 5,0 м и механическим способом с последующим уплотнением укладывают световоды в определенных количествах для создания гексагональной формы волоконных сборок оптимального диаметра, предназначенных для дистанционной ИК диагностики различных объектов, в том числе в условиях повышенной радиации.

Существующая проблема решена за счет того, что разработан экономичный способ получения волоконных сборок на основе фото- и радиационно-стойких световодов состава в мас. %:

бромид серебра 95,0 – 60,0;
твердый раствор TlBr0,46I0,54 5,0 – 40,0,

прозрачных в диапазоне от 2,0 до 25,0 мкм, имеющих низкие оптические потери на длине волны 10,6 мкм – от 0,5 до 0,55 дБ/м; малые перекрестные помехи между соседними волокнами – от 4,5 до 5,0 % и низкое температурное разрешение – от 0,2 до 0,3 оС, что свидетельствует об эффективном пространственном разрешении в 90 мкм. Инфракрасные волоконные сборки устойчивы к ультрафиолетовому излучению и радиационному (бета) излучению дозой до 100 кГр и более.

Пример 1.

Из монокристалла состава в мас. %: 95,0 бромида серебра, 5,0 твердого раствора TlBr0,46I0,54, вырезают заготовку диаметром 13 мм, высотой 34 мм и экструдируют ее для получения поликристаллической заготовки с величиной зерна 700 нм диаметром 3 мм и длиной 640 мм. Затем заготовку вновь экструдируют через специально изготовленную фильеру и получают световод d = 90 мкм, длиной 674 м.

Световод имеет нанокристаллическую структуру с размером зерна в 70 нм, его разрезают на отрезки длиной 4 м и собирают механическим способом волоконную сборку диаметром 210 мкм, содержащую 7 световодов.

Пропускание волоконной сборки составляет 60 – 75% в спектральном диапазоне от 2,0 до 25,0 мкм, оптические потери на длине 10,6 мкм составляют 0,5 дБ/м, перекрестные помехи – 4,5%, пространственное разрешение – 90 мкм, температурное разрешение равно 0,2 оС.

Для определения фотостойкости волоконные сборки облучали ультрафиолетовым излучением в диапазоне 260,0 – 370,0 нм, мощностью 15 Вт в течение 530 мин. Оптические потери в сборке не изменились, т. е. составили 0,5 дБ/м, что свидетельствует о фотостойкости сборок.

Для определения радиационной стойкости сборок использовали бета (β) излучение дозой 100 кГр. Режимы облучения: энергия электронов ускорителя – 10 МэВ, средняя мощность луча – 10 кВт, сила тока пучка – 1000 мкА. Оптические потери составили 0,5 дБ/м, т. е. не изменились при набранной дозе 100 кГр.

Пример 2.

Из монокристалла состава 60,0 % бромида серебра, 40,0 % твердого раствора TlBr0,46I0,54 (в мас. %) вырезают заготовку диаметром 15 мм и высотой 24 мм, экструдируют ее для получения поликристаллической заготовки (размер зерна 800 нм) диаметром 3 мм и длиной 650 мм, которую вновь экструдируют для получения световода нанокристаллической структуры (80 нм) диаметром 90 мкм, длиной 676 м. Световод разрезают на отрезки длиной 5 м в количестве 91 шт и собирают регулярную волоконную сборку с внешним диаметром 990 мкм. Исследование фото- и радиационной стойкости волоконных сборок проводили как в примере 1.

Функциональные свойства сборки:

• диапазон прозрачности от 2 до 25 мкм при пропускании 60 – 70 %;

• оптические потери на длине 10,6 мкм составляют 0,55 дБ/м и не изменяются при фото- и радиационном облучении;

• перекрестные помехи – 5%;

• эффективное пространственное разрешение составляет 90 мкм;

температурное разрешение 0,3 оС.

Пример 3.

Эксперименты проводили также, как в примере 1, но монокристаллическая заготовка диаметром 14 мм и высотой 29 мм имела состав в мас. %: бромида серебра – 78,0, твердого раствора TlBr0,46I0,54 – 22,0. После ее экструзии получили поликристаллическую заготовку (размер зерна 750 нм) диаметром 3 мм, длиной 645 мм, а в результате повторной экструзии изготовили 675-метровой длины однослойный нанокристаллический световод диаметром 90 мкм (размер зерна 75 нм). Световод разрезали на отрезки длиной 4,5 м и механической укладкой сформировали регулярную волоконную сборку гексагональной структуры диаметром 630 мкм, содержащую 37 волокон.

Волоконная сборка прозрачна в среднем ИК диапазоне от 2,0 до 25,0 мкм без окон поглощения и величине пропускания 60 – 75 %; имеет оптические потери на длине волны 10,6 мкм 0,53 дБ/м, которые не изменяются при фото- и радиационном облучении; перекрестные помехи 4,8%; пространственное разрешение составляет 90 мкм; температурное разрешение 0,25 оС.

В случае изготовления ИК волоконных сборок по условиям и режимам, не соответствующим формуле изобретения, подтвержденной примерами, не удается получать сборки с приведенными оптическими свойствами, которые необходимы для практического применения в атомной энергетике, для космических исследований и других областей с повышенной радиацией.

Технический результат

Методом экструзии из монокристаллов системы AgBr – (TlBr0,46I0,54) получают поликристаллические световоды, из которых повторной экструзией получают нанокристаллические световоды и изготавливают из них ИК волоконные сборки гексагональной структуры, обладающие уникальными свойствами:

1. По сравнению с прототипом, сборки устойчивы к УФ облучению и радиационному (β) излучению дозой до 100 кГр и более.

2. Пропускают излучение 60 – 75 % без окон поглощения в спектральном диапазоне от 2,0 до 25,0 мкм. В прототипе указаны относительные единицы пропускания, а не конкретная величина, в спектральном диапазоне от 5,0 до 18,0 мкм.

3. Оптические потери на длине волны 10,6 мкм составляют от 0,5 до 0,55 дБ/м, в прототипе не указаны.

4. Перекрестные помехи равны 4,5 – 5,0 %, что свидетельствует о высоком качестве изготовления регулярных сборок, в прототипе данное свойство не приведено.

5. Пространственное разрешение в сборках – 90 мкм, температурное разрешение – от 0,2 до 0,3 оС, в прототипе свойства не указаны.

6. Разработанные сборки гибкие (имеют радиус изгиба 9 – 10 мм с сохранением оптических свойств при многоразовом изгибе), вследствие нанокристаллической структуры световодов, а также малого диаметра – 90 мкм. Следует отметить, что впервые разработана специальная оснастка для изготовления поликристаллических световодов (PIR) такого диаметра.

7. Способ изготовления волоконных сборок является высоко экономичным по трудозатратам и стоимости сборок, так как для среднего ИК диапазона от 2,0 до 25,0 мкм можно использовать только поликристаллические (нанокристаллические) световоды без применения халькогенидных ИК световодов.

Источник поступления информации: Роспатент

Showing 91-100 of 207 items.
11.10.2018
№218.016.904d

Устройство для получения пленок

Изобретение относится к области ионно-плазменного напыления многослойных пленок, в частности к устройству для получения многослойных пленок. Устройство содержит экранированную катод-мишень и подложкодержатель, расположенный в горизонтальном магнитном поле. При распылении центр подложки...
Тип: Изобретение
Номер охранного документа: 0002669259
Дата охранного документа: 09.10.2018
27.10.2018
№218.016.9750

Мобильный гелиоопреснитель

Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре...
Тип: Изобретение
Номер охранного документа: 0002670928
Дата охранного документа: 25.10.2018
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
19.12.2018
№218.016.a856

Способ извлечения металлов из растворов

Изобретение относится к металлургии цветных металлов, в частности к извлечению благородных металлов из цианистых растворов цинком или алюминием. Способ включает контактирование растворов с электроотрицательным металлом, загруженным в донную конусную часть цементатора. Раствор подают снизу...
Тип: Изобретение
Номер охранного документа: 0002675135
Дата охранного документа: 17.12.2018
30.12.2019
№218.016.adb5

Имитатор радиолокационной цели

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для настройки технических параметров радиолокационных станций (РЛС) на заводе-изготовителе и их проверки при регламентных работах в течение всего срока эксплуатации. Наиболее предпочтительно его...
Тип: Изобретение
Номер охранного документа: 0002676469
Дата охранного документа: 29.12.2018
18.01.2019
№219.016.b134

Способ изготовления труб

Изобретение относится к металлургии, к изготовлению стальных горячедеформированных труб и может использоваться при производстве труб горячей прокаткой на трубопрокатных агрегатах. Способ включает нагрев и прошивку заготовки с получением толстостенной гильзы, деформацию гильзы на оправке с...
Тип: Изобретение
Номер охранного документа: 0002677404
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1be

Антенная решетка свч с щелями переменной геометрии

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Антенная решетка СВЧ содержит дуговой волновод с вырезанными на внешней его стороне поперечными щелями. Длина щелей убывает по линейному или...
Тип: Изобретение
Номер охранного документа: 0002677496
Дата охранного документа: 17.01.2019
17.02.2019
№219.016.bbc6

Способ кучного выщелачивания золота

Изобретение относится к гидрометаллургии и может быть использовано при кучном выщелачивании золота из руд, концентратов и хвостов обогащения. Способ кучного выщелачивания золота включает обработку минерального сырья выщелачивающим раствором, окомкование, закладку окомкованной руды в штабель,...
Тип: Изобретение
Номер охранного документа: 0002680120
Дата охранного документа: 15.02.2019
21.03.2019
№219.016.ead7

Способ получения диаграммы направленности антенной решетки свч с частотным сканированием

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Способ получения диаграммы направленности антенной решетки СВЧ с частотным сканированием, для чего генерируются сигналы с линейно-частотной...
Тип: Изобретение
Номер охранного документа: 0002682592
Дата охранного документа: 19.03.2019
Showing 11-16 of 16 items.
19.12.2019
№219.017.ef4d

Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов

Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации...
Тип: Изобретение
Номер охранного документа: 0002709371
Дата охранного документа: 17.12.2019
12.04.2023
№223.018.4578

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам прозрачным в видимом, инфракрасном (0,5 – 50,0 мкм), терагерцовом и миллиметровом диапазонах – 0,05 – 10,0 ТГц, что соответствует длинам волн 6000,0 – 30,0 мкм. Терагерцовый кристалл согласно изобретению характеризуется тем, что он выполнен...
Тип: Изобретение
Номер охранного документа: 0002756582
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.457e

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, а именно к кристаллам востребованных для применения в медицине, фармацевтике, таможенном дистанционном контроле и в других областях. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых...
Тип: Изобретение
Номер охранного документа: 0002756580
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.4581

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, используемым в производстве терагерцовой оптики. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых растворов системы AgCl – AgBr – TlI и содержит хлорид, бромид серебра и иодид...
Тип: Изобретение
Номер охранного документа: 0002756581
Дата охранного документа: 01.10.2021
15.05.2023
№223.018.5971

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
15.05.2023
№223.018.5972

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
+ добавить свой РИД