×
12.12.2019
219.017.ec49

Результат интеллектуальной деятельности: Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее диаметра. Техническим результатом изобретения является разработка способа для плавного продольного перемещения перетяжки гауссова пучка постоянного диаметра на основе лазерной оптической вариосистемы с изменяющими оптическую силу линзами без использования подвижных компонентов. Сущность изобретения заключается в использовании лазерной оптической системы из двух неподвижных линз, фокусное расстояние которых изменяется по нелинейному закону, при котором обеспечивается плавное изменение положения перетяжки лазерного гауссова пучка при постоянстве ее диаметра. Закон изменения фокусных расстояний компонентов учитывает отличительные свойства лазерного излучения от некогерентного гомоцентрического излучения и выражений лазерной оптики, описывающие преобразование гауссова пучка оптическими элементами и системами. 2 н. и 1 з.п. ф-лы, 4 ил.

Область техники

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость осевого непрерывного плавного перемещения выходной перетяжки лазерного гауссова пучка постоянного диаметра.

Уровень техники

Существуют различные способы формирования лазерного пучка с изменяемыми пространственными параметрами.

Известен способ перемещения перетяжки выходного лазерного пучка постоянного диаметра, реализуемый в устройстве Патент РФ 2411598 С2, содержащем лазер и два перемещающихся оптических компонента. Недостатком способа является необходимость использования системы перемещения двух компонентов, что усложняет конструкцию схемы; перемещение компонентов по заданному закону обеспечивает формирование пучка с требуемым диаметром перетяжки и диапазоном ее перемещения.

В работе and Pavel // Paraxial properties of three-element zoom system for laser beam expanders based on tunable-focus lenses // Opt. Express 23, 15635-15640 (2015) приводится расчет параксиальных параметров трехлинзового расширителя лазерного пучка с использованием двух линз с перестраиваемым фокусным расстоянием и последней третьей линзы - с постоянным фокусным расстоянием. Причем, двухлинзовая оптическая система формирует перетяжку пучка в требуемом сечении, его положение не меняется при перестройке фокусных расстояний линз, а диаметр перетяжки изменяется в заданном диапазоне.

Перечисленные способы и реализуемые на их основе устройства формирования лазерного гауссова пучка с изменяемыми пространственными параметрами требуют перемещения линз или использования многокомпонентной оптической системы.

Наиболее близкой по технической сущности и достигаемому результату является лазерная оптическая система, разработанная в работе J. , М. Lee, A. Morales, Т. Karg, Т. Esslinger, Т. Donner. Optical transport of ultracold atoms using focus-tunable lenses. New J. Phys. 16093028 (2014). В работе используется трехлинзовая оптическая система, в которой первая и третья линзы имеют постоянное фокусное расстояние, а у второй линзы фокусное расстояние изменяется, причем третья линза устанавливается на фокусном расстоянии от второй, т.е. обеспечивается постоянство угловой расходимости выходного гауссова пучка (неизменность диаметра перетяжки) и изменение положения (перемещения) выходной перетяжки.

Раскрытие изобретения

Задачей заявляемого изобретения является разработка способа, обеспечивающего изменение продольного положения перетяжки гауссова пучка при сохранении ее диаметра с помощью двухкомпонентной оптической системы без перемещения компонентов.

Сущность изобретения поясняет фиг. 1, на котором показана структурная схема двухкомпонентной лазерной вариосистемы для плавного изменения положения перетяжки выходного пучка, т.е. расстояние от входной до выходной перетяжки L=var, при сохранении ее диаметра . При этом компонентами оптической системы являются линзы с изменяемым фокусным расстоянием: .

Задача решается за счет того, что в способе плавного продольного перемещения перетяжки выходного пучка постоянного диаметра, реализуемое устройством, включающим последовательно установленные лазер, формирующий гауссов пучок с диаметром перетяжки 2hp1 и конфокальным параметром zk1, двухкомпонентную оптическую систему из линз с изменяемым фокусным расстоянием, осуществляют согласованное изменение фокусного расстояния линз по закону , где , .

При этом положение выходной перетяжки изменяется по закону

,

а продольное увеличение лазерной вариосистемы α и диаметр выходной перетяжками во всем диапазоне изменения фокусных расстояний линз остаются постоянными:

Краткое описание чертежей

На фиг. 1 представлена схема лазерной оптической системы с изменяющими фокусное расстояние линзами (Н, Н' - передняя и задняя главные точки линзы; F,F' - передний и задний фокусы линзы);

На фиг. 2 представлена лазерная вариосистема для продольного перемещения перетяжки гауссова пучка постоянного диаметра;

На фиг. 3 представлен закон изменения фокусных расстояний линз лазерной вариосистемы для продольного перемещения перетяжки гауссова пучка постоянного диаметра;

На фиг. 4 представлен закон изменения положения выходной перетяжки от фокусного расстояния первой линзы лазерной вариосистемы для продольного перемещения перетяжки гауссова пучка постоянного диаметра.

Осуществление изобретения

Пространственные параметры лазерного гауссова пучка на входе двухкомпонентной оптической системы, ее конструктивные параметры и пространственные параметры выходного пучка связаны следующими выражениями (фиг. 1) [Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986.152 с.] (фиг. 1):

диаметр выходной перетяжки ;

расстояние от входной до выходной перетяжки (длина лазерной оптической системы)

Здесь - продольное увеличение двухкомпонентной лазерной оптической системы; 2hp1 и zk1 - диаметр перетяжки и конфокальный параметр пучка на входе оптической системы; d1 - расстояние от перетяжки входного пучка до первой линзы; d2 - расстояние между линзами; d3 - расстояние от второй линзы до выходной перетяжки; - положение (дефокусировка) перетяжки входного пучка относительно переднего фокуса F1 первой линзы оптической системы; - оптический интервал - расстояние между фокусами и F2 линз; и - задние фокусные расстояния линз оптической системы.

Для лазерных гауссовых пучков пространственные параметры удовлетворяют инварианту [Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986. 152 с.]: , где - конфокальный параметр выходного пучка. Значение инварианта лазерного гауссова пучка однозначно определяется длиной волны излучения λ и параметром качества пучка М2. Все эти параметры пучка лазера, а также положение перетяжки, являются заданными перед разработкой лазерной вариосистемы.

Конструктивными параметрами лазерной вариосистемы являются , , d1, d2 и L.

Задачей изобретения является разработка двухкомпонентной лазерной вариосистемы, формирующей гауссов пучок с требуемым диаметром перетяжки и осуществляющей плавное изменение ее положения на заданное расстояние при неизменности диаметра перетяжки.

Решение поставленной задачи достигается тем, что оптическое устройство для непрерывного плавного изменения положения перетяжки лазерного пучка включает последовательно расположенные источник лазерного излучения, формирующий гауссов пучок, оптическую систему из двух линз с перестраиваемым фокусным расстоянием, расположенных на расстоянии d2, причем расстояние от перетяжки до первой линзы равно d1. Изменение фокусных расстояний линз оптической системы для перемещения перетяжки гауссова пучка постоянного диаметра осуществляется по определенному закону. В таком устройстве нет необходимости перемещать компоненты, проводить трудоемкую операцию смены конфигурации и юстировку узлов оптической системы. При этом изменение фокусного расстояния компонентов оптической системы не представляет сложности, такие линзы в настоящее время являются коммерчески доступными, обладают высоким быстродействием, а кроме того, высокой точностью отработки фокусного расстояния [https://www.optotune.com/, http://www.corning.com/ru/ru.html, Blum М., М., С, Aschwanden М. (2011). Compact optical design solutions using focus tunable lenses. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 8167 doi:10.1117/12.897608].

Изобретение включает лазер 1 с длиной волны излучения λ, перетяжкой гауссова пучка 2 диаметром 2hp1, находящейся на расстоянии d0 от выходного торца лазера, конфокальным параметром zk1 и параметром пучка М2, лазерную вариосистему, состоящую из первой 3 и второй 4 линз с изменяемым фокусным расстоянием, на выходе которой формируется пучок с перетяжкой 5 диаметром на расстоянии L от входной перетяжки (см. фиг. 2).

Плавное изменение положения перетяжки выходного пучка с сохранением ее диаметра за счет перестройки фокусных расстояний каждой линзы оптической системы становится возможным лишь при определенных сочетаниях конструктивных параметров схемы, определяющих закон изменения фокусных линз лазерной вариосистемы. Поэтому для выбранного лазерного источника с известными параметрами излучения решить указанную задачу позволяет оптическая система с вполне определенными конструктивными параметрами.

Особенность изобретения заключается в учете свойств источника излучения, представляющего лазерный гауссов пучок, выражений, описывающих его преобразование оптическими элементами и системами, использование аналитической связи между параметрами гауссова пучка и конструктивными параметрами формирующей двухкомпонентной оптической системой и получении условия плавного перемещения выходной перетяжки с сохранением диаметра, т.е. с постоянным увеличением лазерной вариосистемы. Полученная связь позволяет изменять положение перетяжки выходного пучка и обеспечивать неизменность диаметра формируемой перетяжки.

Конструктивные параметры начальной схемы лазерной оптической системы: задние фокусные расстояния первой и второй линзы, положение перетяжки пучка лазера относительно первой линзы d1 и расстояние между линзами d2 - выбираются так, чтобы обеспечить:

1. диаметр перетяжки формируемого гауссова пучка ;

2. продольное увеличение лазерной оптической системы ;

3. длину лазерной оптической системы .

При выполнении этих условий необходимо также обеспечить физическую реализуемость схемы, когда расстояние d2 между линзами положительное и формируется пучок с действительной перетяжкой, т.е. d3>0.

Указанные конструктивные параметры лазерной оптической системы являются исходными данными для определения закона изменения фокусного расстояния линз, при котором изменяется положение выходной перетяжки формируемого пучка и обеспечивается неизменность его диаметра. Для этого фокусные расстояния первой и второй линзы необходимо изменять по нелинейному закону :

,

в котором оптический интервал Δ между компонентами оптической системы находится из решения уравнения аΔ2+2bΔ+с=0, где , , . Для Δ имеем следующее выражение: .

Расстояние L от входной до выходной перетяжки как функция фокусного расстояния первой линзы оптической системы определяется следующим образом (см. фиг. 2):

.

Работает устройство следующим образом (фиг. 2). Излучение лазера 1 с перетяжкой 2 диаметром 2hp1 последовательно преобразуется линзами 3 и 4 оптической системы, на выходе которой формируется перетяжка 5 диаметром . За счет изменения фокусного расстояния линз оптической системы по закону обеспечивается плавное продольное перемещение выходной перетяжки 5 при постоянстве ее диаметра.

Предпочтительный вариант применения изобретения для продольного перемещения выходной перетяжки диаметром мкм с расстояния от входной перетяжки L0=160,0 мм до L=260,0 мм (диапазон перемещения перетяжки 100 мм) при использовании лазера с λ=1,07 мкм, М2=1,1, 2hp1=50 мкм приведен ниже:

1. Продольное увеличение лазерной вариосистемы α=4×.

2. Конструктивные параметры лазерной вариосистемы для исходного (номинального) значения фокусного расстояния линз:

2.1. Расстояние от входной перетяжки до передней главной точки первого компонента d1=50,0 мм.

2.2. Расстояние между задней главной точкой первого компонента и передней главной точкой второго компонента d2=75,0 мм.

2.3. Расстояние от задней главной точки второго компонента до выходной перетяжки d3=35,0 мм.

2.4. Фокусное расстояние первой линзы 34,95 мм.

2.5. Фокусное расстояние второй линзы 260,99 мм.

3. Конструктивные параметры лазерной вариосистемы (решение для Δ со знаком «+»)

На фиг. 3 представлен закон изменения фокусного расстояния линз оптической системы , а на фиг. 4 - закон изменения длины лазерной вариосистемы от фокусного расстояния первой линзы.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-38-20155.

Источники информации

1. РФ 2411598 С2, кл. G11B 7/125, G02F 1/29, H01S 3/10, 2011 г.

2. and Pavel // Paraxial properties of three-element zoom system for laser beam expanders based on tunable-focus lenses // Opt. Express 23, 15635-15640 (2015).

3. J. , M. Lee, A. Morales, T. Karg, T. Esslinger, T. Dormer. Optical transport of ultracold atoms using focus-tunable lenses. New J. Phys. 16093028 (2014).

4. Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.: Радио и связь, 1986. 152 с.

5. https://www.optotune.com/

6. http://www.corning.com/ru/ru.html

7. Blum, М., , М., , С., & Aschwanden, М. (2011). Compact optical design solutions using focus tunable lenses. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering,, 8167 doi:10.1117/12.897608


Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)
Источник поступления информации: Роспатент

Showing 11-20 of 22 items.
14.03.2019
№219.016.df80

Устройство для определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002681658
Дата охранного документа: 12.03.2019
05.04.2019
№219.016.fd4c

Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции...
Тип: Изобретение
Номер охранного документа: 0002683886
Дата охранного документа: 03.04.2019
07.06.2019
№219.017.74e9

Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона

Изобретение относится к неорганической химии и может быть использовано в фотокатализе, литий-ионных аккумуляторах, медицинских зондах. Меламин разлагают в закрытом кварцевом реакторе в азотсодержащей атмосфере при 275-295 С в течение 4,5-6 ч. Получают графитоподобный g-CN, имеющий молярное...
Тип: Изобретение
Номер охранного документа: 0002690810
Дата охранного документа: 05.06.2019
24.10.2019
№219.017.dab1

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002703772
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.dab5

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на плоской грани проводящего тела

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве...
Тип: Изобретение
Номер охранного документа: 0002703941
Дата охранного документа: 23.10.2019
21.12.2019
№219.017.efd6

Интерферометр майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002709600
Дата охранного документа: 18.12.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
13.06.2020
№220.018.26ba

Управляемый ультразвуком поляризатор терагерцового излучения

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002723150
Дата охранного документа: 09.06.2020
Showing 11-20 of 20 items.
29.03.2019
№219.016.f496

Способ и устройство для перемещения перетяжки лазерного пучка

Способ перемещения выходной перетяжки с сохранением постоянства ее размера заключается в использовании двухкомпонентной лазерной оптической системы (ЛОС). ЛОС содержит первый подвижный компонент на расстоянии d от входной перетяжки, второй подвижный компонент на расстоянии d от первого...
Тип: Изобретение
Номер охранного документа: 0002411598
Дата охранного документа: 10.02.2011
29.04.2019
№219.017.467b

Проекционная оптическая система

Оптическая система содержит оптический модулятор, оборачивающую оптическую систему, формирующую плоскость промежуточного изображения, которое фронтальная оптическая система проецирует на зеркало, отражающее изображение на экран. Оптический модулятор содержит красную, зеленую и синюю цветовые...
Тип: Изобретение
Номер охранного документа: 0002462741
Дата охранного документа: 27.09.2012
19.06.2019
№219.017.88b8

Устройство воспроизведения изображения (варианты)

Изобретение относится к области оптики, а именно к устройствам воспроизведения изображения. Устройство содержит, по меньшей мере, одно средство отображения, оптический элемент с полным внутренним отражением (ПВО), соединенный с приводом, и, по меньшей мере, один оптический элемент распределения...
Тип: Изобретение
Номер охранного документа: 0002413264
Дата охранного документа: 27.02.2011
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
19.11.2019
№219.017.e379

Метод контроля формы выпуклых оптических сферических и асферических поверхностей и устройство для его осуществления

Изобретение относится к технологиям получения топографической карты поверхности интерференционным методом и позволяет контролировать форму выпуклой сферической (СП) или асферической (АП) поверхностей. Технический результат - возможность получения топографической карты выпуклых СП или АП...
Тип: Изобретение
Номер охранного документа: 0002706388
Дата охранного документа: 18.11.2019
08.02.2020
№220.018.0039

Способ регистрации мультиспектрального цифрового голографического изображения

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002713567
Дата охранного документа: 05.02.2020
27.02.2020
№220.018.0681

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта

Изобретение относится к технологиям дистанционного измерения пространственного распределения температуры и излучательной способности по поверхности объектов. Заявлен способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта, в котором...
Тип: Изобретение
Номер охранного документа: 0002715089
Дата охранного документа: 25.02.2020
20.05.2020
№220.018.1dd3

Способ изменения длины фокусировки бесселева пучка 0-го порядка

Изобретение относится к области оптического приборостроения и может быть использовано в лазерных оптико-электронных приборах, где возникает необходимость плавного изменения длины фокусировки бесселева пучка 0-го порядка при сохранении постоянным его диаметра ядра. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721085
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
+ добавить свой РИД