×
08.12.2019
219.017.eb7a

Результат интеллектуальной деятельности: ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ

Вид РИД

Изобретение

№ охранного документа
0002708093
Дата охранного документа
04.12.2019
Аннотация: Изобретение относится к способу измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах. Способ измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах, в котором подлежащее покрытию устройство измеряется и его координаты запоминаются относительно заданной системы координат, отличается тем что после нанесения земляного покрытия измеряется профиль местности над устройством, и из него определяется модель местности и сохраняется в заданной системе координат, и что из координат устройства и модели местности определяется толщина слоя земляного покрытия. Технический результат – упрощение контролирования слоя земли. 6 з.п. ф-лы, 1 ил.

Изобретение относится к способу измерения толщины слоя земляного покрытия, в частности, при проложенных под землей газовых и нефтяных трубопроводах.

Проложенные под землей газовые и нефтяные трубопроводы должны быть, в соответствии с предписаниями закона, покрыты землей с минимальной толщиной слоя. При этом эксплуатационники трубопровода должны с периодическими интервалами проверять сохранение этой толщины слоя и устанавливать изменения покрытия. При этом обычно предполагается точность измерения примерно 10 см.

В настоящее время прохождение трубопровода обычно контролируется с помощью вертолетов с воздуха, и при наличии оптически-визуальных сомнительных результатов, толщина слоя оценивается на земле посредством измерения вручную.

Однако это не является непрерывным во времени измерением с высокой частотой облета, поскольку относительно дорогостоящие облеты с помощью вертолетов обычно осуществляется лишь каждые 2-4 недели или даже каждый квартал.

Кроме того, за счет эрозии почвы может происходить непрерывный снос земляного покрытия, так что не сохраняется заданная толщина покрытия, без возникновения оптически заметных изменений. Поэтому толщину слоя необходимо проверять с регулярными интервалами посредством обхода и измерений вручную.

Поэтому в основу изобретения положена задача создания способа, с помощью которого может быть упрощено контролирование толщины слоя.

Задача решена, согласно изобретению, с помощью способа, согласно пункту 1 формулы изобретения.

Предпочтительные варианты выполнения указаны в зависимых пунктах формулы изобретения.

Ниже приводится более подробное пояснение изобретения со ссылками на фигуру, на которой в качестве примера показано использование, согласно изобретению, беспилотного летательного аппарата.

На фиг. 1 показан проложенный в грунте и покрытый землей трубопровод 1, при этом толщина 4 слоя покрытия землей должна иметь заданное минимальное значение.

Положение и прохождение трубопровода 1 предпочтительно точно определено во время процесса прокладки и внесено в память. При этом значение имеет, прежде всего, верхняя кромка трубы, она измеряется обычно с кадастровой точностью, т.е. с допустимыми отклонениями в установленном нижнем сантиметровом диапазоне. Между отдельными измерительными точками можно выполнять (линейную) интерполяцию, с целью получения тем самым непрерывного прохождения трубопровода (контура трубопровода). Это измерение может при необходимости выполняться с помощью беспилотных летательных аппаратов.

Однако возможно также определение положения, соответственно, прохождения трубопровода 1 в последующем в закопанном состоянии с помощью подходящих способов измерения.

Это может осуществляться, например, с помощью так называемых измерительных кротов с инерциальными измерительными системами, которые вводятся в трубу. Другая возможность состоит в измерении с помощью радарных технологий.

Затем с помощью беспилотных летательных аппаратов создается цифровая модель 3 местности, т.е. цифровое числовое запоминание информации о высоте ландшафта над и вокруг трубопровода 1.

Это может осуществляться, например, с помощью фотограмметрии, при которой соответствующая местность во время пролета измерительных видеокамер фотографируется из различных положений. Из накладывающихся друг на друга снимков измерительных видеокамер затем создается цифровая модель 3 местности, которая вместе с данными прохождения трубопровода используется для определения толщины слоя земляного покрытия 4.

Наряду с камерами, которые работают в различных спектральных диапазонах, беспилотные летательные аппараты могут иметь также, например, радарные или лазерные измерительные системы.

Кроме того, необходимо точное определение положения беспилотного летательного аппарата во время облета и фотографирования, соответственно, во время процессов измерения.

Для этого пригодны, в частности, системы глобальной спутниковой навигации, точность которых может быть улучшена с помощью стационарных приемных станций, которые передают сигналы коррекции пользователю.

В качестве альтернативы спутниковым навигационным системам возможно определение положения с помощью магнитометров, гироскопических датчиков, а также барометрических датчиков.

При облете с помощью беспилотного летательного аппарата 2 целесообразно уже учитывать при управлении полетом известное прохождение трубопровода, т.е. определять точки пути облета автоматически из контура трубопровода. Так, например, летательный аппарат 2 может выдерживать постоянную высоту над трубопроводом и тем самым реагировать на изменения высоты в топографии местности.

В то время как для управления только полетом достаточна обычная точность систем GPS, для создания цифровой модели 3 местности из фотографий беспилотного летательного аппарата 2 требуется точное определение положения, которое может осуществляться, например, с помощью кинематики реального времени (Real Time Kinematic, RTK) или дифференциальной глобальной системы позиционирования (DGPS). Это определение положения не должно выполняться для каждой фотографии, достаточно, когда с помощью отдельных точных положений можно определять абсолютное положение модели местности и ее абсолютные размеры.

Кинематикой реального времени называется специальный вариант дифференциальной системы GPS, которая использует не сообщения GPS, а несущую частоту сигнала для синхронизации. Однако поскольку несущая частота существенно выше частоты сообщений, то достигаемая с помощью кинематики реального времени точность также существенно выше, чем в обычном способе дифференциальной GPS, и лежит в диапазоне нескольких сантиметров.

Создание трехмерной модели местности может осуществляться с помощью фотограмметрического способа и с использованием измерительных видеокамер, т.е. камер с небольшими погрешностями изображения.

Однако в качестве альтернативного решения можно использовать также такие способы, как, например, лазерная альтиметрия (Airborne Laser scanning)/

Лазерное сканирование (называемое также LiDAR - Light Detection And Raging) является методом дистанционного распознавания, при котором с помощью лазерного луча сканируется поверхность земли и измеряется расстояние между измеряемой точкой на поверхности земли и датчиком.

Когда сканирующий блок находится на летательном аппарате 2, то это называется воздушным лазерным сканированием.

Преимущества лазерного сканирования состоят, прежде всего, в достигаемой высокой плотности измерительных точек и точности измерения, а также в возможности проникновения через растительность.

Таким образом, способ образует отличную основу для создания цифровой модели местности, которая, в противоположность цифровой модели поверхности, представляет поверхность земли без зданий и растительности.

В качестве активной системы лазер не зависит от солнечного света, и его можно использовать также ночью для измерения данных.

Воздушные лазерные сканеры для съемок местности обычно работают с длиной волны между 800 и 900 нм (инфракрасный диапазон), спектральные значения которого составляют 0,1-0,5 нм.

Может быть целесообразным согласование длины волны применяемого лазера с областью использования, поскольку вид отражения, соответственно, поглощения объектом лазерных лучей зависит от длины волны. Так, например, водные поверхности отражают свет в видимом диапазоне очень сильно, так что применение лазера с длиной волны в видимом диапазоне затрудняет оценку.

При собственно измерении толщины слоя определяется расстояние верхней кромки трубопровод 1 до соответствующей лежащей вертикально над ним точки модели 1 местности, т.е. сравнивается высота точек на контуре трубопровода с высотой соответствующей каждой точки географической ширины и долготы на модели 3 местности.

При расположении трубопровода 1 на склоне может быть целесообразным определять не только расстояние между верхней кромкой трубы и лежащей вертикально над ней точкой модели 3 местности, а кратчайшее расстояние между точкой на окружности трубопровода 1 и точкой пересечения модели 3 местности с предпочтительно расположенной перпендикулярно оси трубы плоскостью сечения. Таким образом, можно устанавливать также боковые отклонения от заданной толщины слоя.

В показанном примере выполнения для измерения прохождения или профиля местности используется беспилотный летательный аппарат 2, который является особенно целесообразным относительно доступности и эффективности использования. Однако в принципе изобретение не ограничивается этим, и возможно использование любых пилотируемых и беспилотных транспортных средств, если они пригодны для размещения измерительных устройств.

Кроме того, возможно также использование стационарных измерительных устройств.

Предпочтительно, когда способ, согласно изобретению, согласован с системой контролирования и управления трубопровода (SCADA). Так, например, сообщение о неисправности системы управления может инициировать использование измерения толщины слоя в определенной зоне трубопровода, и результаты измерения могут оптически отображаться с помощью системы контролирования и управления.

Изобретение можно использовать предпочтительно не только для измерения толщины слоя земляного покрытия в различно проложенных газовых и нефтяных трубопроводах, но также, например, для водопроводов, кабелей электрического тока и других устройств.

Перечень позиций

1 Трубопровод

2 Беспилотный летательный аппарат

3 Цифровая модель местности

4 Толщина слоя земляного покрытия


ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ
ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ
Источник поступления информации: Роспатент

Showing 181-190 of 1,427 items.
27.03.2014
№216.012.af59

Энергетический преобразовательный модуль с охлаждаемой ошиновкой

Изобретение относится к энергетическому преобразовательному модулю, по меньшей мере, с одним силовым полупроводниковым модулем (2, 4), которые термически активно соединены механически с жидкостным охладителем (6) и которые посредством ошиновки (8), содержащей по меньшей мере две изолированные...
Тип: Изобретение
Номер охранного документа: 0002510604
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b0a1

Система автоматизации и способ управления системой автоматизации

Изобретение относится к системе автоматизации со средством управления автоматизации, периферийным блоком и системой шины, а также к способу управления подобной системой автоматизации. Техническим результатом является повышение надежности функционирования системы автоматизации. Система (1)...
Тип: Изобретение
Номер охранного документа: 0002510932
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b0df

Способ сварки заготовок из высокожаропрочных суперсплавов с особой массовой скоростью подачи сварочного присадочного материала

Изобретение относится к способу лазерной сварки заготовок (9) из высокожаропрочных суперсплавов. Создают с помощью лазерного источника (3) тепла зоны (11) подвода тепла на поверхности (10) заготовки. Подают с помощью устройства (5) сварочный присадочный материал (13) в зону (11) подвода тепла и...
Тип: Изобретение
Номер охранного документа: 0002510994
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b338

Временная синхронизация в автоматизированных приборах

Изобретения относятся к временной синхронизации в автоматизированных приборах. Способ заключается в том, что сформированный в выбранном модуле (11а) базовый временной тракт передается на по меньшей мере один другой модуль (11b) и применяется для синхронизации временного такта модулей (11а,...
Тип: Изобретение
Номер охранного документа: 0002511596
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3b0

Соединительный контактный элемент

Соединительный контактный элемент (1, 1а, 1b) имеет первый и второй соединительные контактные участки (3, 4). Соединительные контактные участки (3, 4) соединены друг с другом через центральный участок (5). Центральный участок (5) имеет уменьшающуюся зону (16, 16а, 16b), при этом уменьшающаяся...
Тип: Изобретение
Номер охранного документа: 0002511716
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3e5

Кольцевой узел лопаток газотурбинного двигателя

Кольцевой узел лопаток газотурбинного двигателя содержит лопаточный сегмент с дуговой направляющей и лопатками, проходящими от направляющей, а также полый цилиндрический корпус, имеющий кольцевую канавку для размещения направляющей. Направляющая закреплена в кольцевой канавке посредством...
Тип: Изобретение
Номер охранного документа: 0002511770
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3ec

Устройство сгорания

Изобретение относится к устройству сгорания, в частности газотурбинному двигателю, содержащему: трубопровод подачи топлива в устройство сгорания для обеспечения подачи всего топлива в устройство сгорания; по меньшей мере одну горелку, включающую множество трубопроводов подачи топлива по меньшей...
Тип: Изобретение
Номер охранного документа: 0002511777
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b487

Уплотнительный элемент, сопловое устройство газовой турбины и газовая турбина

Уплотнительный элемент канала утечки между наружной площадкой турбинного сопла и удерживающим ее опорным кольцом включает лепестковое уплотнение и образующую ударные струи пластину. Опорное кольцо и наружная площадка включают поверхности, расположенные перпендикулярно оси соплового сегмента и...
Тип: Изобретение
Номер охранного документа: 0002511935
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b48a

Резонатор гельмгольца для камеры сгорания газовой турбины

Резонатор с приспосабливаемой частотой (f) резонатора для поглощения звука, создаваемого газовым потоком газовой турбины (110), при этом резонатор (100) содержит горловинную секцию (102), камеру (101) и деформируемый элемент (103), выполненный с возможностью деформации под действием изменения...
Тип: Изобретение
Номер охранного документа: 0002511939
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b82d

Электрическая машина, в частности, погружной электродвигатель с защищенным статором

Изобретение относится к области электротехники и может быть использовано в погружном электродвигателе с защищенным статором. Техническим результатом является повышение прочности и коэффициента полезного действия. Электрическая машина имеет корпус (4) статора и окружающий ротор (2) электрической...
Тип: Изобретение
Номер охранного документа: 0002512876
Дата охранного документа: 10.04.2014
Showing 1-3 of 3 items.
19.03.2020
№220.018.0dbd

Система для определения положения трубопроводов

Изобретение относится к области определения местоположения трубопроводов. Система для определения положения трубопроводов с помощью по меньшей мере одного внутритрубного инспекционного геоприбора, который вводится в трубопровод, продвигается в нем и имеет магнитный источник для создания...
Тип: Изобретение
Номер охранного документа: 0002716864
Дата охранного документа: 17.03.2020
21.05.2020
№220.018.1eda

Способ управления беспилотными летательными аппаратами

Изобретение относится к способу управления беспилотным летательным аппаратом (UAV), применяемым для регистрации и замера объектов в заданной области. Для управления UAV для регистрируемой и замеряемой области устанавливают практически беспрепятственную зону перелета, в которой UAV с помощью...
Тип: Изобретение
Номер охранного документа: 0002721450
Дата охранного документа: 19.05.2020
23.05.2023
№223.018.6f3e

Способ для визуализации и валидации событий процесса и система для осуществления способа

Изобретение относится к способу для визуализации и валидации событий процесса в системах контроля процессов, содержащему следующие признаки: - стационарно установленная система датчиков сообщает состояния в систему контроля процесса, - при превышении заданных предельных значений система...
Тип: Изобретение
Номер охранного документа: 0002746442
Дата охранного документа: 14.04.2021
+ добавить свой РИД