×
27.11.2019
219.017.e6eb

Результат интеллектуальной деятельности: Способ переработки бокситов

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С. Предложенный способ обеспечивает извлечение оксида алюминия в раствор, равное 94%, из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера. Кроме того, способ позволяет получать алюминатные растворы с низким содержанием кремния и железа. 2 пр.

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов по схеме Байера.

Известен способ получения глинозема из боксита, включающий смешение боксита с щелочно-алюминатным раствором, выщелачивание боксита в автоклавах при температуре 140-250°С в течение 1-2 ч с получением алюминатного раствора с концентрацией щелочи 150-200 г/л Na2Ok и каустическим модулем в конечном алюминатном растворе на 0,03-0,10 единиц выше его равновесного уровня в принятых условиях выщелачивания, отделение шлама от алюминатного раствора, разложение алюминатного раствора с получением гидроксида алюминия и маточного раствора, при этом щелочно-алюминатный раствор получают упариванием маточного раствора, смешением шлама, полученного после выщелачивания боксита в автоклавах с упаренным маточным раствором с концентрацией щелочи 160-260 г/л Na2Ok и каустическим модулем 2,6-3,2, выдержку при температуре 98-110°С, отделением шлама от алюминатного раствора. Степень извлечения глинозема составляет 92,5% (Патент RU 2226174, МПК C01F 7/06, 2004 год).

Недостатком известного способа является наличие технологической операции, связанной с приготовлением пульты из маточного раствора и шлама и ее выщелачиванием, что усложняет технологический процесс производства и требует установки дополнительного бакового оборудования.

Известен способ получения оксида алюминия из средне- и низкосортного боксита, который включает добавление в боксит оборотного маточного раствора и деалюминированного остатка, содержащего трехкальциевый гидроалюминат и кремнезем, полученного путем разделения суспензии после переработки красного шлама с добавлением в нее извести, автоклавное выщелачивание по способу Байера с получением суспензии, которую разделяют с получением раствора алюмината натрия и красного шлама, раствор алюмината натрия далее перерабатывают с получением маточного раствора и оксида алюминия (патент RU 2478574, МПК C01F 7/06, 2011 год).

Недостатком известного способа является необходимость введения в технологию отдельного передела по производству трехкальциевого гидроалюмината, который используют в качестве добавки при выщелачивании. Кроме того, способ обеспечивает относительно невысокую степень выщелачивания (не более 80%).

Наиболее близким по технической сущности является способ получения глинозема из бокситов, включающий добавление к бокситу оборотного раствора процесса Байера и извести, предварительно обожженной при температуре 1400 – 1500°С, автоклавное выщелачивание в две стадии: сначала при температуре 90-95°С, а затем при температуре 220°С, с последующим разбавлением и перемешиванием полученной пульпы при температуре 98-100оС. Способ обеспечивает извлечение оксида алюминия до 92% (Бибанаева С.А., Сабирзянов Н.А., Корюков В.Н., Уфимцев В.М., Абакумов С.А. “Технология получение извести и использование ее при производстве глинозема”, “Естественные и технические науки”, № 5, 2014)(прототип).

Однако известный способ обеспечивает возможность переработки на глинозем с высокой степенью извлечения только хорошо вскрывающихся бокситов гиббситового или гиббсит-бемитового типа, к которым в частности относятся бокситы Тиманского месторождения. При переработки известным способом на глинозем трудно вскрываемых бокситов степень извлечения составляет не более 92%.

Таким образом, перед авторами стояла задача разработать способ переработки, трудно вскрываемых бокситов диаспор или диаспор-бемитового типа обеспечивающим высокую степень извлечения оксида алюминия.

Поставленная задача решена в предлагаемом способе переработки бокситов, включающем добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание, с отделением алюминатного раствора после выщелачивания, в котором обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С.

В настоящее время из патентной и научно-технической литературы не известен способ переработки бокситов с извлечением оксида алюминия с использованием обожженной при 1200-1300°С извести в количестве 12-14 масс.% от массы боксита и проведении стадии выщелачивания в предлагаемых авторами условиях.

В настоящее время производство глинозема (оксида алюминия) осуществляется преимущественно из бокситов гиббситового или гиббсит-бемитового типа. Однако в РФ основные запасы бокситов, находящиеся на Урале, относятся к трудно вскрываемым бокситам диаспорового или диаспор-бемитового типа. Таким образом, является актуальной задача разработки способа извлечения оксида алюминия из бокситов этого типа с обеспечением высокого процента извлечения. Проведенные авторами исследования позволили определить условия и параметры проведения технологического процесса, обеспечивающего высокое извлечение оксида алюминия (до 94%). Использование извести, обожженной при температуре 1200-1300°С, объясняется изменением химических свойств извести (оксида кальция) под влиянием высоких температур. При температурах обжига выше 1300°С происходит изменение параметров кристаллической решетки в сторону уменьшения, в результате чего повышается прочность кристаллической решетки и снижается реакционная способность оксида кальция. Предлагаемый авторами температурный интервал предварительного обжига извести является оптимальным, обеспечивая максимальную реакционную способность извести для активации процесса вскрытия трудно вскрываемых бокситов. При использовании извести, обожженной ниже 1200°С, в количестве менее 12 масс.% от массы боксита степень выщелачивания не превышала 87%, при использовании извести, обожженной выше 1300°С, в количестве более 14 масс.% от массы боксита степень выщелачивания не превышала 88%. Существенными являются параметры проведения процесса выщелачивания, обеспечивающие разложения и перевода в раствор максимально возможного количества оксида алюминия. Выщелачивание осуществляли при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 МПа и температуре 230-235°С. Жесткие условия процесса обусловлены минералогическим составом бокситов диаспорового или диаспор-бемитового типа, который осложняет вскрытие сырья по сравнению с другими глиноземсодержащими минералами. Так, при снижении соотношения жидкое : твердое, менее 3.0:1, снижении давления ниже 30атм и температуры ниже 230 степень извлечения оксида алюминия в раствор снижается до 86-87%, при повышении соотношения жидкое : твердое, более 3.5:1, при повышении давления выше 32атм и температур выше 235° степень извлечения оксида алюминия в раствор также снижается до 88%. Предлагаемый способ позволяет упростить технологический процесс, поскольку позволяет исключить дополнительное предварительное низкотемпературное выщелачивание.

Предлагаемый способ может быть осуществлен следующим образом. Осуществляют автоклавное выщелачивание “сырой” пульпы, полученной путем добавления в боксит, в частности в боксит Северо-уральского месторождения, оборотного раствора и обожженной при температуре 1200-1300°С извести в количестве 12-14 масс.% от массы боксита. Выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С, в течение 2-2,5 часов. Затем отключают нагрев, охлаждают автоклав до комнатной температуры и открывают. Полученный продукт фильтруют. Алюминатный раствор помещают в отдельную емкость. Проводят химический анализ алюминатного раствора с целью определения содержания алюминия, натрия, кремния и железа. Определяют извлечение оксида алюминия в раствор. Определяют извлечение по формуле: Вхим= 1- (Ашл*Feб/ Аб *Feшл)*100, где Аб и Fб - содержание Al2O3 и Fe2O3 в боксите, % и Ашл и Fшл - содержание Al2O3 и Fe2O3 в шламе, %. Кремневый модуль определяют по формуле: µSi= Al2O3/ SiO2, где Al2O3 и SiO2 –содержание алюминия и кремния в алюминатном растворе, г/л.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Масса навески 15 г. Берут 13,2 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 1,8г (12% масс.) отожженной при температуре 1200°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 30атм, включают нагрев до температуры 230°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028, кремневый модуль – 528, степень выщелачивания составила 94%.

Пример 2. Масса навески 15 г. Берут 12,9 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 2,1 г (14% масс.) отожженной при температуре 1300°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 32атм, включают нагрев до температуры 235°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028 , кремневый модуль – 528, степень выщелачивания составила 94%.

Таким образом, авторами предлагается простой, эффективный способ извлечения оксида алюминия в раствор из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера, обеспечивающий высокое извлечение равное 94%, высокий кремневый модуль и низкое содержание железа в алюминатном растворе.

Способ переработки бокситов, включающий добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание с отделением алюминатного раствора после выщелачивания, отличающийся тем, что обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С.
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
15.05.2023
№223.018.5b39

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.5b3a

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
16.05.2023
№223.018.630b

Композиционный материал на основе гидроксиапатита для костных имплантатов и способ его получения

Изобретение относится к получению материала для костных имплантатов, используемых в ортопедической хирургии при восстановлении и лечении костной ткани. Способ получения композиционного материала для костных имплантатов включает получение исходной порошковой смеси, содержащей (мас.%):...
Тип: Изобретение
Номер охранного документа: 0002771382
Дата охранного документа: 04.05.2022
21.05.2023
№223.018.68c2

Способ получения ванадата металла

Изобретение относится к химической технологии и может быть использовано для промышленного синтеза пигментов, диэлектрических и электродных материалов, а также катализаторов. Сначала готовят раствор источника ванадия путем растворения оксида ванадия в лимонной кислоте в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002794821
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.6af4

Оптическая матрица для термолюминесцентного материала и способ ее получения

Группа изобретений относится к области дозиметрии. Технический результат – расширение номенклатуры материалов, используемых в качестве оптических матриц в дозиметрии. Технический результат достигается применением литий-магниевого фторфосфата состава LiMg(PO)F в качестве оптической матрицы для...
Тип: Изобретение
Номер охранного документа: 0002795672
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6c03

Способ активации порошка алюминия

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем...
Тип: Изобретение
Номер охранного документа: 0002737950
Дата охранного документа: 07.12.2020
30.05.2023
№223.018.7382

Способ получения микросфер оксида железа feo

Изобретение относится к металлургии, в частности к способу получения микросфер оксида железа FeO, который может быть использован в качестве эффективного анодного материала химических источников тока, цианобактерицидного реагента, предотвращающего размножение сине-зеленых водорослей, сенсорного...
Тип: Изобретение
Номер охранного документа: 0002762433
Дата охранного документа: 21.12.2021
16.06.2023
№223.018.7aab

Способ получения монокристалла оксида ниобия

Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала...
Тип: Изобретение
Номер охранного документа: 0002734936
Дата охранного документа: 26.10.2020
16.06.2023
№223.018.7d52

Способ извлечения ванадия

Изобретение относится к металлургической промышленности, в частности к способам извлечения ванадия из производственных растворов, и может быть использовано в технологии получения ванадия и аналитической химии. Извлечение ванадия проводят путем экстракции ванадия из водного раствора соединением...
Тип: Изобретение
Номер охранного документа: 0002748195
Дата охранного документа: 20.05.2021
Showing 11-11 of 11 items.
08.08.2020
№220.018.3e11

Средство для лечения пародонтита и способ лечения пародонтита

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано в терапии при лечении воспалительных заболеваний пародонта. Предлагаемое средство для лечения пародонтита содержит кремнийорганический глицерогидрогель, гидроксиапатит и активную добавку, причем в...
Тип: Изобретение
Номер охранного документа: 0002729428
Дата охранного документа: 06.08.2020
+ добавить свой РИД