×
26.11.2019
219.017.e6c9

Результат интеллектуальной деятельности: Интеллектуальная космическая система для мониторинга зданий и сооружений

Вид РИД

Изобретение

Аннотация: Изобретение относится к интеллектуальной космической системе мониторинга. Технический результат заключается в дистанционном зондировании Земли для мониторинга зданий и сооружений. Система включает совокупность компьютерных средств, структурированных на основе сверточной нейронной сети, связанных с космическими аппаратами дистанционного зондирования Земли и обеспечивающих получение итоговых изображений, сформированных на базе изображений, принятых от космического аппарата дистанционного зондирования Земли, и уточняющих данных дистанционного зондирования Земли, при этом компьютерные средства, структурированные на основе сверточной нейронной сети, связаны с космическими аппаратами дистанционного зондирования Земли типа Ресурс-П, сверточная нейронная сеть обрабатывает изображения строительных объектов, принятые от космических аппаратов дистанционного зондирования Земли указанного типа, с формированием методом скользящего окна прямоугольных матриц пикселей изображения с заданным шагом - кропов, генерацией нескольких отображений для каждой прямоугольной матрицы путем поворота и зеркального отображения с сегментацией каждого отображения средствами сверточной нейронной сети и его классификацией средствами сверточной нейронной сети в качестве одного из строительных объектов. 3 ил.

Предлагаемое изобретение относится к области средств и технологий дистанционного зондирования Земли, а именно к применению результатов дистанционного зондирования Земли для мониторинга зданий и сооружений.

Из уровня техники известен способ обработки изображений со спутников [Thomas Blaschke, Stefan Lang, Eric Lorup, Josef Strobl and Peter Zeil. Object-Oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications. EnviroInfo 2000: Umweltinformatik '00 Umweltinformation Planung, Politik und Copyright 2000 Metropolis Verlag, Marburg]. Способ включает обработку спутниковых снимков по различным алгоритмам и сочетание полученных результатов с данными GIS.

В качестве ближайшего аналога предлагаемого изобретения может быть выбрана основанная на использовании нейронной сети система получения и обработки космических снимков, предложенная в заявке на изобретение CN 107945146, Univ. Nanjing Information Science & Tech., публикация 2018 г. Система из CN 107945146 включает совокупность компьютерных средств, структурированных на основе сверточной нейронной сети, связанных с космическими аппаратами дистанционного зондирования Земли программы LandSat и научно-исследовательским космическим аппаратом Aqua с аппаратурой дистанционного зондирования Земли Modis. Сверточная нейронная сеть обеспечивает получение итоговых изображений, сформированных на базе изображений, принятых от космического аппарата дистанционного зондирования Земли, и уточняющих данных дистанционного зондирования Земли.

В свою очередь, в нашем изобретении предложено применить технические возможности сверточной нейронной сети для решения более узкой задачи - мониторинга зданий и сооружений для контроля возведения несанкционированных строительных объектов, с обеспечением быстроты обработки данных и задействовании меньшего количества вычислительных ресурсов. Нами предложена интеллектуальная космическая система мониторинга, включающая совокупность компьютерных средств на основе сверточной нейронной сети, позволяющих обрабатывать данные с космических аппаратов дистанционного зондирования Земли Ресурс-П. Отличие от аналога заключается в структуре нейронной сети и использовании данных с космических аппаратов дистанционного зондирования Земли типа Ресурс-П. Сверточная нейронная сеть обрабатывает изображения строительных объектов, принятые от космических аппаратов дистанционного зондирования Земли указанного типа, с формированием методом скользящего окна прямоугольных матриц пикселей изображения с заданным шагом - кропов, генерацию нескольких отображений для каждой прямоугольной матрицы путем поворота и зеркального отображения с сегментацией каждого отображения средствами сверточной нейронной сети и его классификацией средствами сверточной нейронной сети в качестве одного из строительных объектов и получением итогового изображения.

Предложенная система поясняется следующими изображениями:

фиг. 1 - схема алгоритма распознавания и классификации строительных сооружений;

фиг. 2 - архитектура сверточной нейронной сети с отображением последовательности операций кодировки и декодировки;

фиг. 3 - разбиение исходного снимка на куски фиксированного размера методом скользящего окна.

Спутниковые снимки строительных сооружений, полученные с космических аппаратов Ресурс-П поступают на вход сверточной нейронной сети (фиг. 1). В настоящее время используются спутниковые снимки в уровне обработки 4А - комплексированное изображение панхроматического (уровня обработки 2А) и многоспектрального (уровня обработки 2А1) снимков одной и той же территории. Применение сверточной нейронной сети в предлагаемой архитектуре позволит быстрее выполнять обработку данных за счет меньшего количество операций и времени, необходимых для выполнения одного прохода сети, так как нейронная сеть менее требовательна к техническим ресурсам, а также позволяет выполнять обработку в режиме близком к реальному времени. Применение космических аппаратов Ресурс-П позволит задействовать при мониторинге строительных сооружений данные дистанционного зондирования Земли высокого и сверхвысокого разрешения.

Архитектуру предложенной сверточной сети можно описать (фиг. 2) как совокупность последовательностей блоков кодировки и декодировки. Блоки кодировки уменьшают пространственное разрешение исходного изображения в данном случае разрешение кропов - прямоугольных матриц пикселей изображения. Блоки декодировки увеличивают пространственное разрешение, объединяя входные данные с картами признаков, полученных с помощью метода проброса из блоков кодировки соответствующего разрешения, что обеспечивает ансамблирование результатов всех слоев и разрешений.

Блок кодировки представляет собой набор из трех функциональных подблоков (операций над картами признаков): слой свертки, функция активации ReLU, слой субдискретизации. Блок декодировки представляет собой набор из четырех функциональных подблоков (набор из двух последовательностей двух операций): слой свертки, функция активации ReLU. Слой свертки включает свой фильтр для каждого канала, ядро свертки которого обрабатывает предыдущий слой по фрагментам, суммируя результаты матричного произведения для каждого фрагмента, и обозначается свертка ([k×k], m, n), где k×k - размер ядра свертки, m и n количество входных и выходных фильтров для слоя соответственно. Функция активации ReLU, представляющая собой функцию max(0,x) ReLU=x, позволяет избежать проблем затухающего и взрывающегося градиента, а также является вычислительно несложной, скалярный результат каждой свертки попадает на функцию активации. Слой субдискретизации (слой подвыборки) представляет собой нелинейное уплотнение карты признаков, при этом группа точек (обычно размера 2×2) уплотняется до одной точки, проходя нелинейное преобразование. Наиболее употребительна при этом функция максимума. Преобразования затрагивают непересекающиеся прямоугольники или квадраты, каждый из которых ужимается в одну точку, при этом выбирается точка, имеющая максимальное значение. Операция пулинга (то есть, если на предыдущей операции свертки уже были выявлены некоторые признаки, то для дальнейшей обработки настолько подробное изображение уже не нужно, и оно уплотняется до менее подробного и служит для генерации новых карт признаков большей размерности) позволяет существенно уменьшить пространственный объем изображения.

Блок декодировки результата представляет собой набор из четырех функциональных подблоков (последовательных операций): пространственное исключение - выключает слой нейронов с вероятностью р; слой свертки с ядром 1×1 - необходим для уменьшения размерности карты признаков; функция активации - скалярный результат каждой свертки попадает на функцию активации, которая представляет собой нелинейную функцию sigmoid=1/(1+e-x), позволяющая усиливать слабые сигналы и не насыщаться от сильных сигналов; линейное увеличение размерности - операция обратная субдискретизации, то есть линейное повторение карты признаков, каждая точка преобразуется в группу точек 2×2, проходя линейное преобразование, преобразования затрагивают все точки, каждая из которых превращается в группу точек, при этом они имеют одинаковое значение, данная операция позволяет увеличить объем изображения.

Для обработки принятых спутниковых снимков методом скользящего окна формируют кропы - прямоугольные матрицы пикселей изображения (фиг. 3), кропы формируют с заданным шагом, для чего задают размеры скользящего окна HSW×WSW, задают шаг скользящего окна - SH пикселей по вертикали и SW пикселей по горизонтали; исходное изображение I с высотой Н и шириной W дополняют по краям до размера кратного размерам скользящего окна; из дополненного изображения с шагом SH×SW формируют матрицы пикселей - кропы размера HSW×WSW. Предложено использовать HSW×WSW=512 пикселей для обеспечения с одной стороны попадания достаточно крупных объектов в один кроп, что позволит достичь заданной точности, и практической возможности создания программной реализации, с другой стороны, поскольку размер окна напрямую определяет размер слоя нейронной сети, увеличение которого ведет к увеличению требований к размеру памяти и скорости работы аппаратного обеспечения и экспоненциальному увеличению времени обучения. Также, предложено использовать шаг SH=HSW/2=256 пикселей и SW=WSW/2=256 пикселей для обеспечения наложения кропов друг на друга таким образом, чтобы край одного кропа совпадал с центром смежного с ним, что позволит избежать конфликтов на краях кропов при восстановлении сегментации всего снимка из сегментаций отдельных кропов.

Для каждой прямоугольной матрицы - кропа генерируют несколько отображений путем поворота и зеркального отображения исходного изображения. Предложено генерировать восемь отображений на каждый кроп, то есть вариации отображения исходного куска с помощью операций поворота на угол π/2 и зеркального отображения. То есть, для кропа изображения С(ϕ(x) - поворот на угол π/2, ψ(x) - зеркальное отображение) множество из восьми отображений О модно представить, как O={С, ϕ(С), ϕ(ϕ(С)), ϕ(ϕ(ϕ(С))), ψ(С), ψ(ϕ(С)), ψ(ϕ(ϕ(С))), ψ(ϕ(ϕ(ϕ(С))))}. Средствами сверточной нейронной сети получают карту сегментов для каждого отображения с последующей классификацией в качестве одного из объектов строительных сооружений для чего через нейронную сеть пропускают исходный кроп С, итоговая функция получения предсказания - P=h(C) на кроп изображения С. В результате, на выходе сегментации сверточной нейронной сети получается набор из восьми (для рассматриваемого примера) карт вероятности того, что каждая точка исходного кропа может быть классифицирована, как изменения строительных сооружений.

К полученному набору карт вероятности применяются операции обратного отображения (поворота на - π/2 и зеркального отображения) с целью получения прообразов используемых образов применительно к выходным картам вероятности. При x=ψ(ψ(x)) и х=ϕ-1(х)=ϕ(ϕ(ϕ(x))), искомое множество Ор имеет вид Ор={Р1, ϕ-1-1-1)(P2))), ϕ-1-1(P3)), ϕ-1(P4), ψ(P5), ψ(ϕ-1-1)(ϕ-1)(P6)))), ψ(ϕ-1-1)(P7))), ψ(ϕ-1(P8))}. С помощью усреднения предсказаний уточняют границы полученных сегментов. Итоговое предсказание для каждой точки кропа изображения для предложенного варианта вычисляется по следующей формуле Pитог(i,j)=Σk=18Pk(i,j)/8. Данный подход позволяет улучшить результаты сегментации, полученные на предыдущем этапе. Объединив полученные пересекающиеся карты предсказаний с помощью взвешенной суммы, используя в качестве весов двумерное распределение Гаусса с нулем в центре кропа и среднеквадратичным отклонением σ=HSW/2⋅3=~85, вычисленное в точках соответствующих центрам пикселей кропа, чтобы получить сегментацию исходного изображения. Это позволит устранить конфликты и артефакты на границах кропов, так как для каждого пикселя наибольший вклад в его значение внесет тот кроп, к центру которого он ближе находится, а вклад крайних точек кропа составит ~0,2.


Интеллектуальная космическая система для мониторинга зданий и сооружений
Интеллектуальная космическая система для мониторинга зданий и сооружений
Интеллектуальная космическая система для мониторинга зданий и сооружений
Интеллектуальная космическая система для мониторинга зданий и сооружений
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
13.02.2020
№220.018.0235

Свч коммутационная плата из высокоомного кремния на металлическом основании

Заявленное изобретение относится к конструкции СВЧ коммутационной платы из высокоомного кремния на металлическом основании. Техническим результатом заявленного изобретения является уменьшение омических потерь при распространении энергии СВЧ, обеспечение возможности варьировать в более широких...
Тип: Изобретение
Номер охранного документа: 0002713917
Дата охранного документа: 11.02.2020
15.02.2020
№220.018.02ee

Способ маршрутизации в сетях подвижной персональной спутниковой связи на низкоорбитальных спутниках-ретрансляторах с зональной регистрацией абонентов и маршрутизатор низкоорбитального спутника ретранслятора с интегрированными службами для осуществления указанного способа

Изобретение относится к области беспроводной связи. Технический результат заключается в повышении эффективности работы алгоритмов маршрутизации в сетях подвижной персональной спутниковой связи (СППСС) на низкоорбитальных спутниках ретрансляторах (НСР) за счет снижения вычислительной нагрузки на...
Тип: Изобретение
Номер охранного документа: 0002714220
Дата охранного документа: 13.02.2020
27.02.2020
№220.018.0684

Космическая система траекторных измерений

Изобретение относится к средствам определения орбит космических аппаратов (КА). Система траекторных измерений включает один или более КА на солнечно-синхронной орбите, средства контроля бортовой аппаратуры дальномерно-доплеровской системы (ДДС) КА, связанные с одним или более...
Тип: Изобретение
Номер охранного документа: 0002715069
Дата охранного документа: 25.02.2020
05.04.2020
№220.018.135a

Интеллектуальная космическая система для мониторинга участков недропользования открытого типа

Изобретение относится к вычислительной технике и может быть использовано для мониторинга участков недропользования открытого типа. Техническим результатом является повышение быстродействия обработки данных и снижение количества вычислительных ресурсов. Система содержит совокупность компьютерных...
Тип: Изобретение
Номер охранного документа: 0002718419
Дата охранного документа: 02.04.2020
06.07.2020
№220.018.300c

Перестраиваемый диодный лазер с внешним резонатором

Изобретение относится к лазерной технике. Перестраиваемый диодный лазер с внешним резонатором содержит последовательно установленные на единой оптической оси лазерный диод, коллимирующий объектив, интерференционный фильтр, фокусирующий объектив, отражающее зеркало, установленное на единой...
Тип: Изобретение
Номер охранного документа: 0002725639
Дата охранного документа: 03.07.2020
21.05.2023
№223.018.6898

Способ формирования объемных элементов в кремнии для устройств микросистемной техники и производственная линия для осуществления способа

Способ формирования объемного элемента для устройств микросистемной техники предусматривает формирование маски для анизотропного травления с лицевой стороны и с обратной стороны из двух слоев; обработку кремния в водном растворе, содержащем окислительный компонент для кремния и травящий...
Тип: Изобретение
Номер охранного документа: 0002794560
Дата охранного документа: 21.04.2023
17.06.2023
№223.018.7e01

Микромодуль космического назначения

Изобретение относится к микроэлектронным приборам космического назначения и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом. Предложен микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных...
Тип: Изобретение
Номер охранного документа: 0002778034
Дата охранного документа: 12.08.2022
17.06.2023
№223.018.7f2d

Способ изготовления микромодуля

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате...
Тип: Изобретение
Номер охранного документа: 0002773807
Дата охранного документа: 09.06.2022
17.06.2023
№223.018.8039

Многоцелевая модульная платформа для создания космических аппаратов нанокласса

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули...
Тип: Изобретение
Номер охранного документа: 0002762452
Дата охранного документа: 21.12.2021
Showing 1-2 of 2 items.
18.10.2019
№219.017.d7cf

Интеллектуальная космическая система для мониторинга лесного фонда

Изобретение относится к системам мониторинга лесного фонда. Технический результат заключается в обеспечении ансамблирования результатов полученных слоёв и разрешений. Система включает совокупность компьютерных средств на основе свёрточной нейронной сети, использующей данные с космических...
Тип: Изобретение
Номер охранного документа: 0002703349
Дата охранного документа: 16.10.2019
05.04.2020
№220.018.135a

Интеллектуальная космическая система для мониторинга участков недропользования открытого типа

Изобретение относится к вычислительной технике и может быть использовано для мониторинга участков недропользования открытого типа. Техническим результатом является повышение быстродействия обработки данных и снижение количества вычислительных ресурсов. Система содержит совокупность компьютерных...
Тип: Изобретение
Номер охранного документа: 0002718419
Дата охранного документа: 02.04.2020
+ добавить свой РИД