×
22.11.2019
219.017.e50d

Способ получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам обработки воды электрохимическими методами, а именно к способу контроля содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита. Изобретение может быть использовано в сельском хозяйстве для обработки семян и полива растений. Предложен способ получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений, включающий контроль содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита с одновременным определением количества выделившегося водорода посредством установленного датчика с калибровочным графиком, связывающим количество выделившегося водорода с концентрацией пероксида водорода в активированной воде, и добавление воды до содержания пероксида водорода в растворе от 5⋅10 М до 5⋅10 М. Предложенный способ позволяет увеличить рост семян растений. 1 ил., 4 табл.
Реферат Свернуть Развернуть

Изобретение относится к способам обработки воды электрохимическими методами, а именно к способу контроля содержания пероксида водорода в активированной воде в процессе ее получения, и может быть использовано в различных отраслях народного хозяйства, где традиционно применяется активированная вода: в сельском хозяйстве для обработки семян и для полива растений, в качестве антибактериального средства в медицине и пищевой промышленности и др.

Известны различные способы и устройства для получения активированной воды с помощью электрохимических методов. Обычно воду активируют в диафрагменных электролизерах с раздельным выводом кислой и щелочной воды (Рогов В.М., Филипчук В.Л. Электрохимическая технология изменения свойств воды. Львов: Изд-во ЛГУ, 1989, с. 82; RU 2113411, C02F 1/46, 20.06.1998; RU 2170499, А01С 1/00, 20.07.2001). Известно устройство для получения активированной воды (кислой и щелочной), содержащее генератор радиочастотной плазмы для воздействия радиоволнами на обрабатываемую воду (RU 2272787, C02F 1/30, C02F 103/02, 27.03.2006).

В предлагаемом изобретении активированной водой является «плазменная» вода, получаемая авторами принципиально иным способом по сравнению с приведенными выше известными способами получения активированной воды, и существенно отличающаяся по своим свойствам.

«Плазменную» (далее без кавычек) воду получали по методу, разработанному в Институте общей физики им. A.M. Прохорова РАН (Н.В. Бабурин, С.В. Белов и др. Гетерогенная рекомбинация в плазме водяных паров как механизм воздействия на биологические ткани. Доклады Академии наук. Физика. 2009, том 426, №4, с. 468-470; С.В. Белов, Ю.К. Данилейко и др. Особенности генерации низкотемпературной плазмы в высокочастотных плазменных электрохирургических аппаратах. Медицинская техника, №2, 2011, с. 26-32), следующим образом: в объеме водного раствора электролита (например, физиологический раствор) формировали электродный плазменный разряд с высокочастотной накачкой. Электродами плазменного разряда являлись с одной стороны погруженный в жидкость "горячий" металлический электрод, а с другой - жидкий квазиэлектрод на границе плазма-электролит. Формирование жидкого квазиэлектрода вокруг поверхности металлического электрода ведет к образованию однородного по толщине (~1.5⋅10-4 м) плазменного слоя из паров воды с постоянной плотностью тока.

Возбуждение плазмы производили высокочастотным током с частотой следования импульсов ПО кГц при амплитудном значении напряжения на металлическом электроде до 300 В. Для замыкания электрической цепи использовался второй металлический электрод большей площади, также погруженный в жидкость. Исследование динамики падения силы тока, протекающего через металлический электрод, показало, что время вскипания электролита на острие электрода с образованием плазмы водяного пара (температура пара Т~150°С при атмосферном давлении) имеет величину (3-4)⋅10-5 с. Энергетические параметры плазмы исследовались методом эмиссионной спектроскопии. На основании исследования эмиссионного спектра излучения плазмы и с учетом литературных данных оценивались энергетические параметры плазмы водяного пара, в частности, значение электронной температуры плазмы определено равным Те=4.8 эВ, энергии электронов - .

В эмиссионном спектре излучения наблюдались линии водорода, атомарного натрия, а также полосы излучения гидроксильных групп ОН. Энергетические потери горячих электронов (е) в плазме водяного пара при энергии ~4 эВ в основном определяются неупругими потерями за счет диссоциативного прилипания свободного электрона к молекуле воды с ее последующей диссоциацией с образованием иона Н- и гидроксила ОН:

Дальнейшие плазмохимические реакции приводят к образованию в плазменной воде, в том числе, водорода и пероксида водорода (ПВ):

Анализ полученной плазменной воды на содержание ПВ (для анализа использовали количественный йодометрический метод, как наиболее чувствительный: А.В. Лобанов, Н.А. Рубцова, Г.Г. Комиссаров. Доклады Академии наук. Химия. 2008, том 421, №6, с. 773-776; RU 2477470, G01N 33/02, 10.03.2013) показал, что концентрация ПВ в плазменной воде составляет 1⋅10-5-5⋅10-5 М (3,4⋅10-4-1,7⋅10-3 г/л). При хранении полученной плазменной воды в течение 6 суток в темном сосуде при температуре +20°С изменения концентрации ПВ не наблюдалось.

Известно, что ПВ является нетоксичным, экологически безопасным и уникальным по многим свойствам регулятором роста растений (Корзинников Ю.С. Экологически безопасные средства защиты растений. Вестник РАСХН. 1997, №2, с. 44-47; Апашева Л.М., Комиссаров Г.Г. Влияние пероксида водорода на развитие растений. Изв. РАН, сер. биол. 1996, №5, с. 621-623; RU 2142707, 20.12.1999; RU 2172099, 20.08.2001). Установлено, что ПВ стимулирует образование крахмала в процессе фотосинтеза высших растений (RU 2253235, 10.06.2005), позволяет защищать растения от засухи (RU 2423813, 20.07.2011), повышает их морозоустойчивость (RU 2264070, 20.11.2005), увеличивает жизнеспособность зеленых черенков картофеля (RU 2584417, 20.05.2016), стимулирует образование хлорофилла в процессе развития высших растений (RU 2578531, 27.03.2016). Обработка растворами ПВ растений в период вегетации или почво-грунтов является наиболее щадящим методом стимулирования роста, сохраняющим жизнеспособность почвенной микрофлоры.

Плазменная вода в качестве стимулятора роста растений до настоящего времени не исследовалась.

Проведенные при создании заявляемого изобретения испытания ростстимулирующих свойств плазменной воды показали, что плазменная вода значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации (см. примеры 1-4), что предположительно можно объяснить, во-первых, тем, что применяемые в медицине и сельском хозяйстве растворы ПВ, как и в приведенных нами контрольных примерах, обязательно содержат стабилизаторы, снижающие активность ПВ, и во-вторых, присутствием помимо ПВ микропримесей из материалов металлических электродов, неизбежно появляющихся в плазменной воде. Возникает необходимость контроля за содержанием ПВ в плазменной воде в процессе ее получения, так как наиболее целесообразно получать плазменную воду непосредственно на месте ее применения, в том числе в полевых условиях (достаточно лишь иметь воду практически любой чистоты и доступ к источнику электроснабжения).

Задачей изобретения является разработка способа получения раствора ПВ с требуемой концентрацией для стимулирования роста растений, включающего контроль содержания ПВ в активированной (плазменной) воде в процессе ее получения, что позволит повысить эффективность ее использования и производства.

Решение поставленной задачи достигается предлагаемым способом получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений, включающим контроль содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита с одновременным определением количества выделившегося водорода посредством установленного датчика с калибровочным графиком, связывающим

количество выделившегося водорода с концентрацией пероксида водорода в активированной воде, и добавление воды до содержания пероксида водорода в растворе от 5⋅10-7 М до 5⋅10-5 М.

Как видно из уравнений плазмохимических реакций (2), на одну молекулу выделившегося водорода синтезируется одна молекула ПВ, то есть, зная количество выделившегося водорода, можно рассчитать концентрацию ПВ в получаемой воде.

Предлагаемый способ осуществляют следующим образом.

Для перевода значений количества выделившегося водорода в соответствующие значения концентрации пероксида водорода в активированной воде используется калибровочный график.

Как видно из уравнений плазмохимических реакций (2), на одну молекулу выделившегося водорода синтезируется одна молекула ПВ, то есть, зная количество выделившегося водорода, можно рассчитать концентрацию ПВ в получаемой плазменной воде.

Предлагаемый способ осуществляют следующим образом.

Схема процесса представлена на чертеже. Сосуд (1) заполняют водным раствором электролита, на «горячий» металлический электрод (2) и второй металлический электрод (3) большей площади с генератора (4) подают высокочастотное напряжение и формируют жидкий квазиэлектрод вокруг поверхности «горячего» металлического электрода (2) с образованием однородного по толщине плазменного слоя из паров воды для воздействия на водный раствор электролита. Одновременно с генерированием плазмы водяного пара с помощью датчика (5) (Мегакон 10К, тип: электрохимический, производитель: Тарусский филиал ИОФ РАН) производят измерение количества выделившегося водорода и определяют содержание в получаемой плазменной воде ПВ - датчик (5) запрограммирован в соответствии с калибровочным графиком. Из сосуда (1) плазменная вода с известной концентрацией ПВ поступает в смеситель (6), в который подается требуемое количество воды для получения рабочего раствора с заданной концентрацией ПВ. Рабочий раствор из смесителя (6) направляется для применения или в накопитель (7).

Приводим примеры испытаний ростстимулирующих свойств плазменной воды. Тест-объектами были выбраны представители разных семейств с/х растений (что существенно при определении возможной универсальности применения плазменной воды): Огурец сорт «Конкурент» и «Дальневосточный», семейство тыквенных; Редис сорт «18 дней», семейство капустных; сафлор сорт «Заволжский», семейство астррвых.

Анализ степени воздействия получаемой воды на растения вели на ранних стадиях их развития с помощью морфологических тестов.

Учитывали:

а) количество проросших семян;

б) вступление растений в очередную фазу развития по количеству растений с появившимся первым листом;

в) развитие корневой системы; j

г) количество жизнеспособных растений к определенному времени эксперимента.

Пример 1.

Семена огурца сорт «Дальневосточный» замачивали в чашках Петри - в контроле в дистиллированной воде и в растворах ПВ, в опыте - в растворах плазменной воды, которую получали, активируя водные растворы солей NaCl и KCl (концентрация 0,9%). Чашки с семенами помещали в термостат при температуре +20°С. На третьи сутки определяли количество проросших семян. Результаты приведены в таблице 1 - плазменная вода значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации. Заметных отличий при использовании хлорида натрия или калия при получении плазменной воды по степени воздействия на прорастание семян огурца не наблюдается.

Пример 2.

Опыт проводили аналогично примеру 1, но с семенами огурца сорт «Конкурент». В качестве соли использовали только NaCl. Через 48 часов определяли количество проросших семян, через 72 часа учитывали количество семян с длиной корня, равной или большей 8-9 мм. Результаты приведены в таблице 2 - плазменная вода значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации.

Пример 3.

Семена редиса сорт «18 дней» замачивали в чашках Петри - в контроле в дистиллированной воде и в растворах ПВ, в опыте - в растворах плазменной воды, которую получали, активируя физраствор (0,9% NaCl). Через 20 часов семена высаживали в культуральные сосуды с песком, который однократно увлажняли соответствующими растворами. Растения подращивали в культуральном шкафу с ритмом освещения 12-12. На 6-е сутки эксперимента учитывали количество растений с раскрытым семядольным листом. Результаты приведены в таблице 3 - плазменная вода значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации.

Пример 4.

Опыт проводили аналогично примеру 3, но с семенами сафлора, которые замачивали в чашках Петри в течение 4 часов и затем помещали в культуральные сосуды с увлажненным песком. На седьмые сутки измеряли высоту надземной части растений. Результаты приведены в таблице 4 - плазменная вода значительно превосходит по эффективности воздействия водные растворы ПВ соответствующей концентрации.

Таким образом, разработан способ контроля содержания ПВ в активированной (плазменной) воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита, что существенно повысит эффективность ее использования и производства. Проведенные испытания ростстимулирующих свойств плазменной воды показали практическую значимость решаемой данным изобретением задачи.

Способ получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений, включающий контроль содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита с одновременным определением количества выделившегося водорода посредством установленного датчика с калибровочным графиком, связывающим количество выделившегося водорода с концентрацией пероксида водорода в активированной воде, и добавление воды до содержания пероксида водорода в растворе от 5⋅10 М до 5⋅10 М.
Способ получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений
Источник поступления информации: Роспатент

Showing 1-10 of 13 items.
01.09.2019
№219.017.c4f5

Устройство для контроля плотности эмульсионного взрывчатого вещества или других жидкостей в вертикальных скважинах и способ осуществления контроля плотности

Изобретение относится к плотномерам гидростатического типа, которые позволяют измерять плотность жидкостей в вертикальных скважинах, и может быть использовано для контроля плотности газонасыщенного эмульсионного взрывчатого вещества (ЭВВ) в вертикальных скважинах перед взрывом. Способ контроля...
Тип: Изобретение
Номер охранного документа: 0002698737
Дата охранного документа: 29.08.2019
12.10.2019
№219.017.d4bd

Способ плазменной активации воды или водных растворов и устройство для его осуществления

Группа изобретений может быть использована в сельском хозяйстве, в медицине и пищевой промышленности. Способ активации воды или водных растворов включает воздействие плазмы на объем обрабатываемой воды или водных растворов. Осуществляют бесконтактную активацию. На воду или водные растворы...
Тип: Изобретение
Номер охранного документа: 0002702594
Дата охранного документа: 08.10.2019
01.12.2019
№219.017.e97f

Способ получения нанопорошка карбида титана

Изобретение относится к неорганической химии и нанотехнологии и может быть использовано для получения износостойких абразивных материалов, высокотемпературных керамических материалов и покрытий, высокопрочных композиционных материалов. В вертикально ориентированный реактор 1 из термостойкого...
Тип: Изобретение
Номер охранного документа: 0002707596
Дата охранного документа: 28.11.2019
13.02.2020
№220.018.01e6

Биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов и способ его получения

Изобретение относится к области очистки окружающей среды. Предложен биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов, представляющий собой нетканое полимерное волокнистое полотно, выполненное из одного или нескольких слоев волокон биополимера: полигидроксибутирата,...
Тип: Изобретение
Номер охранного документа: 0002714079
Дата охранного документа: 11.02.2020
27.05.2020
№220.018.2140

Способ повышения регенерационного потенциала имплантируемого материала для восстановительной хирургии (варианты)

Изобретение относится к области медицины, а именно к вариантам способов повышения регенерационного потенциала имплантируемого материала для восстановительной хирургии. В первом варианте изготавливают из неэлектропроводного полимера путем нанесения на имплантируемый материал покрытия из...
Тип: Изобретение
Номер охранного документа: 0002721880
Дата охранного документа: 25.05.2020
23.05.2023
№223.018.6bfb

Способ сжигания смесей горючего с газообразным окислителем и устройство для его осуществления

Изобретение относится к области энергетики. Способ сжигания смесей горючего с газообразным окислителем заключается в том, что предварительно перемешанную смесь горючего с газообразным окислителем подают в горелку, содержащую систему теплопроводящих элементов из жаростойкого, жаропрочного...
Тип: Изобретение
Номер охранного документа: 0002737266
Дата охранного документа: 26.11.2020
23.05.2023
№223.018.6cdf

Способ получения нанопорошка карбида железа

Изобретение относится к области получения карбида железа, в частности к области получения нанопорошков карбида железа газофазными методами, который может быть использован в таких областях, как электрохимия, катализ, биомедицина. Предложен способ получения наночастиц карбида железа со структурой...
Тип: Изобретение
Номер охранного документа: 0002770102
Дата охранного документа: 14.04.2022
27.05.2023
№223.018.706c

Способ получения метанола

Изобретение относится к области газопереработки, а именно к способу получения метанола из природного газа. Предложенный способ включает в себя следующие стадии: получение синтез-газа парциальным окислением природного газа в матричном конверторе при давлении 1-5 атм. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002780881
Дата охранного документа: 04.10.2022
27.05.2023
№223.018.7086

Радиопоглощающий материал холодного отверждения

Изобретение относится к негорючим, устойчивым к воздействию высоких температур радиопоглощающим материалам (РПМ), и может быть использовано в безэховых камерах. Предложен радиопоглощающий материал, содержащий диэлектрическое связующее и поглощающий электромагнитное излучение компонент,...
Тип: Изобретение
Номер охранного документа: 0002782419
Дата охранного документа: 26.10.2022
27.05.2023
№223.018.7093

Электромембранный ионный источник и способ его изготовления

Изобретение относится к области аналитического приборостроения и может быть использовано для масс-спектрального анализа состава полярных растворов, находящихся при атмосферном давлении. Технический результат - снижение напряжения для создания сильного электрического поля, экстрагирующего ионы...
Тип: Изобретение
Номер охранного документа: 0002785413
Дата охранного документа: 07.12.2022
Showing 1-10 of 29 items.
10.03.2013
№216.012.2ea2

Способ контроля качества меда

Изобретение относится к способам анализа пищевых продуктов, а именно к способам оценки качества меда, и может быть использовано в пищевой промышленности для распознавания натурального и фальсифицированного продукта. Способ включает количественное определение содержания в меде химического...
Тип: Изобретение
Номер охранного документа: 0002477469
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ea3

Способ количественного определения пероксида водорода в натуральных медах и других продуктах пчеловодства

Изобретение относится к анализу пищевых продуктов и может быть использовано в пищевой промышленности для оценки качества меда, а также в практике научно-исследовательских работ при изучении биологических свойств продуктов пчеловодства. Способ включает взаимодействие ПВ с окисляющимся...
Тип: Изобретение
Номер охранного документа: 0002477470
Дата охранного документа: 10.03.2013
10.11.2013
№216.012.7fac

Система микросейсмического зондирования земной коры и проведения сейсмического мониторинга

Изобретение относится к геофизике и может быть использовано с целью поиска и разведки нефтяных и газовых подводных месторождений. Согласно заявленному способу регистрации сейсмических сигналов при поиске подводных залежей углеводородов осуществляют регистрацию сейсмических колебаний поверхности...
Тип: Изобретение
Номер охранного документа: 0002498357
Дата охранного документа: 10.11.2013
27.02.2014
№216.012.a5b7

Способ элиминации вируса папилломы человека высокого онкогенного риска для профилактики рака шейки матки и устройство для его осуществления

Группа изобретений относится к медицине, лечению патологии шейки матки (ШМ), ассоциированной с папилломавирусной инфекцией высокого онкогенного риска (ВПЧ). Для элиминации ВПЧ при профилактике рака ШМ наносят на слизистую ШМ слой углеродного красителя и облучают его лазерным излучением....
Тип: Изобретение
Номер охранного документа: 0002508138
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.ad0b

Способ определения малых концентраций молекул летучих веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и...
Тип: Изобретение
Номер охранного документа: 0002510014
Дата охранного документа: 20.03.2014
27.04.2014
№216.012.be40

Способ создания устойчивого травяного покрова для газонов

Изобретение относится к области сельского хозяйства, а именно к ландшафтному дизайну. Способ включает использование биологически активной добавки, в качестве которой используют композицию, представляющую собой смесь в равных объемных долях водных растворов: пероксида водорода в концентрации...
Тип: Изобретение
Номер охранного документа: 0002514444
Дата охранного документа: 27.04.2014
27.11.2014
№216.013.09bf

Способ продления периода естественного покоя клубней картофеля и торможения их прорастания

Способ торможения прорастания клубней картофеля заключается в том, что клубни обрабатывают водным раствором пероксида водорода в концентрации 1·10-5·10 М (0,34-1,70 г/л), подсушивают и затем обрабатывают 10-15%-ным водным раствором окисленного крахмалсодержащего продукта. Водный раствор...
Тип: Изобретение
Номер охранного документа: 0002533903
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.3ebb

Способ прерывания периода естественного покоя клубней картофеля и ускорения их прорастания

Cпособ ускорения прорастания клубней картофеля включает биологически активное воздействие на клубни. Указанное воздействие осуществляют путем обработки клубней картофеля водным раствором, содержащим пероксид водорода. Биологически активное воздействие на клубни картофеля осуществляют...
Тип: Изобретение
Номер охранного документа: 0002547547
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.5530

Устройство для осуществления трансмиокардиальной лазерной реваскуляризации

Изобретение относится к области клинической лазерной медицины и может быть использовано при проведении трансмиокардиальной лазерной реваскуляризации миокарда (ТМЛР), как самостоятельно, так и в сочетании с аортокоронарным шунтированием (АКШ). Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002553329
Дата охранного документа: 10.06.2015
27.11.2015
№216.013.9427

Фотохимический способ получения стабилизированных наночастиц серебра

Изобретение может быть использовано в производстве средств санитарной обработки для применения в медицине, ветеринарии, пищевой промышленности и в быту. Фотохимический способ получения стабилизированных наночастиц серебра включает взаимодействие ионов серебра со стабилизирующим агентом в водном...
Тип: Изобретение
Номер охранного документа: 0002569546
Дата охранного документа: 27.11.2015
+ добавить свой РИД