×
21.11.2019
219.017.e432

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ

Вид РИД

Изобретение

№ охранного документа
0002706455
Дата охранного документа
19.11.2019
Аннотация: Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ. Техническим результатом является повышение точности измерения. В способе размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ и ƒ, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков длинной линии возбуждают как в отрезке двухпроводной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и ƒ и Δϕ, по результату которого определяют положение границы раздела веществ. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения положения границы раздела двух веществ, находящихся в каком-либо резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ.

Известны способы и устройства для измерения положения границы раздела двух веществ в резервуарах, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с.). Такой отрезок длинной линии размещается вертикально в емкости с контролируемыми веществами, образующими в резервуаре границу раздела. Измеряя какой-либо его информативный параметр, в частности, резонансную частоту электромагнитных колебаний, можно определить положение границы раздела двух веществ. Недостатком таких способов измерения и реализующих их устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров обоих или одного из веществ, образующих границу раздела.

Известно также техническое решение (SU 460447, 10.04.1973), которое содержит описание двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждаются электромагнитные колебания типа ТЕМ на основной (1-ой) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно найти уровень z из соотношения где и - начальные (при z=0) значения ƒ1 и ƒ2. Это соотношение обладает свойством инвариантности к величине ε и ее возможным изменениям. Недостатком этого способа является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, с непостоянными значениями диэлектрической проницаемости вышерасположенного вещества.

Известно также техническое решение (SU 1765712 А1, 10.10.1980), по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа, в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемых вертикально отрезок длинной линии, и заполняемых жидкостью в соответствии с ее уровнем в резервуаре. Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.

Недостатком этого способа также является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, в частности двух несмешивающихся жидкостей с разной плотностью, с непостоянными значениями электрофизических параметров вышерасположенного вещества.

Техническим результатом является повышение точности измерения положения границы раздела двух веществ в резервуаре.

Технический результат достигается тем, что в предлагаемом способе измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают как в отрезке двухпроводной длинной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.

Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.

На фиг. 1 приведена схема устройства для реализации способа.

На фиг. 2 показано распределение напряженности электрического поля стоячей волны вдоль отрезков коаксиальной длинной линии.

Здесь показаны контролируемые вещества 1 и 2, отрезки коаксиальной длинной линии 3 и 4, отрезок двухпроводной длинной линии 5, электронные блоки 6 и 7, вычислительный блок 8, регистратор 9, электронный блок 10.

Способ реализуется следующим образом.

В резервуаре, содержащем расположенные одно над другим вещества 1 и 2, образующие плоскую границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии 3 и 4 (фиг. 1). Координата z границы раздела веществ 1 и 2, подлежащая определению, отсчитывается от нижних концов отрезков длинной линии; считается, что нижний конец каждого отрезка длинной линии совмещен с дном емкости.

Третий отрезок длинной линии 5 - двухпроводной длинной линии - образован наружными проводниками отрезков коаксиальной длинной линии 3 и 4. Отрезки коаксиальной длинной линий 3 и 4 имеют разные нагрузочные сопротивления на их концах. Это обеспечивает отличие друг от друга двух зависимостей соответствующих резонансных частот ƒ1 и ƒ2 отрезков длинной линии от координаты z границы раздела двух веществ. Между параллельными наружными проводниками отрезков коаксиальной длинной линии - отрезке двухпроводной длинной линии 5 осуществляют с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн. При этом, при совместной функциональной обработке ƒ1, ƒ2 и Δϕ за счет наличия трех отрезков длинной линии, устраняется недостаток способа-прототипа - зависимость результатов измерения значения z от электрофизических параметров обоих веществ, образующих границу раздела.

Для осуществления способа измерения с использованием указанных двух отрезков коаксиальной длинной линии 3 и 4, являющихся резонаторами, возможна, в частности, следующая реализация устройства для этой цели. Один из отрезков однородной коаксиальной длинной линии 3 выполняют короткозамкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно нулю) и разомкнутым на верхнем конце, другой отрезок однородной коаксиальной длинной линии 4 выполняют разомкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно бесконечности) (фиг. 1). Третий отрезок длинной линии - отрезок двухпроводной длинной линии 5, образованный наружными проводниками отрезков коаксиальной длинной линии 3 и 4, разомкнут на нижнем конце

С помощью высокочастотных генераторов, входящего в состав электронных блоков 6 и 7, соответственно, в отрезках коаксиальной длинной линии 3 и 4 возбуждают электромагнитные колебания основного ТЕМ-типа на резонансных частотах ƒ1 и ƒ2, соответственно. В этих же электронных блоках осуществляют также измерение соответствующих резонансных частот ƒ1 и ƒ2. Далее осуществляют в вычислительном блоке 8 совместное преобразование ƒ1, ƒ2 и Δϕ с целью определения положения границы раздела двух веществ 1 и 2 в емкости независимо от значений диэлектрической проницаемости обоих веществ 1 и 2. С выхода вычислительного блока 8 данные о текущем значении положения границы раздела двух веществ 1 и 2 поступают в регистратор 9.

Распределение напряженности электрического поля стоячей волны в этих четвертьволновых отрезках коаксиальной длинной линии 3 и 4 показано на фиг. 2 соответствующими линиями a и b (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 50-59).

Будем считать, что содержащиеся в резервуаре вещества 1 и 2 являются диэлектрическими веществами, характеризуемыми величинами относительных диэлектрических проницаемостей ε1 и ε2, соответственно, вышерасположенного и нижерасположенного веществ.

Для отрезков длинной линии, длина каждого из которых имеет длину и возбуждаемых на, соответственно, резонансных частотах ƒ1 и ƒ2 электромагнитных колебаний, зависимость ƒ1 и ƒ2 от координаты z границы раздела двух веществ можно выразить следующими соотношениями:

где , - начальные (при отсутствии в резервуаре обоих веществ, образующих границу раздела) значения ƒ1 и ƒ2, соответственно; ε1 и ε2 - диэлектрическая проницаемость вышерасположенного и нижерасположенного веществ, соответственно;

U1(ξ) и U2(ξ) - напряжение в точке с координатой ξ соответствующего отрезка линии, возбуждаемого на резонансных частотах ƒ1 и ƒ2, соответственно.

Если отрезок длинной линии короткозамкнут на нижнем конце и разомкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ1), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:

Тогда

Если отрезок длинной линии разомкнут на нижнем конце и короткозамкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ2), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:

Тогда

В результате будем иметь:

Между параллельными наружными проводниками отрезков коаксиальной длинной линии 3 и 4 как в отрезке двухпроводной длинной линии 5 с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн.

Для фазового сдвига Δϕ возбуждаемой на фиксированной частоте F электромагнитной волны и распространившейся вдоль отрезка двухпроводной длинной линии 5 и электромагнитной волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, в данном случае - при наличии в емкости двух веществ, образующих границу раздела, будем иметь (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):

где z - координата границы раздела между двумя веществами, отсчитываемые от нижнего конца отрезка длинной линии, где координата z=0; Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце отрезка длинной линии.

Фазовый сдвиг Δϕ0 имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Здесь XH - реактивное нагрузочное сопротивление, W - волновое сопротивление отрезка длинной линии. Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π. Для разомкнутого на конце отрезка длинной линии, который в дальнейшем и будем здесь рассматривать, Δϕ0=0.

Рассматривая соотношения (1), (2) и (9) как систему уравнений относительно трех неизвестных ε1, ε2 и z, в результате ее решения находим их значения. Из совместного преобразования соотношений (1) и (2) следует:

Подставив эти найденные значения ε1 и ε2 в соотношение (9), записанное для отрезка двухпроводной длинной линии, разомкнутого на нижнем конце (при этом Δϕ0=0) получим следующее соотношение для определения z, которое является инвариантом относительно ε1 и ε2:

В соотношении (12) информация об измеряемой величине z содержится в неявном виде. Следовательно, производя согласно соотношению (12) совместное функциональное преобразование значений величин ƒ1, ƒ2 и Δϕ, поступающих с трех отрезков длинной линии 3, 4 и 5 в вычислительный блок 8 устройства, реализующего данный способ измерения, можно определить текущее значение величины z независимо от значений величин ε1 и ε2.

В вышеприведенных формулах следует использовать вместо ε1 и ε2 значения эффективной диэлектрической проницаемости εэфф1 и εэфф2, соответственно, при применении отрезков длинной линии, по меньшей мере, один из проводников каждого из которых покрыт диэлектрической оболочкой определенной толщины (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 125-131). В этом случае возможно измерение положения границы раздела двух веществ с произвольными электрофизическими параметрами (диэлектрической проницаемости, электропроводности) независимо от их значений для обоих веществ и возможных изменений в процессе измерения.

Таким образом, данный способ позволяет определять положение границы раздела двух веществ в резервуаре независимо от электрофизических параметров обоих веществ, образующих границу раздела.

Способ измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, в котором размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ и ƒ, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, отличающийся тем, что дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают, как в отрезке двухпроводной длинной линии, электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и ƒ и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ
Источник поступления информации: Роспатент

Showing 11-20 of 276 items.
20.02.2014
№216.012.a328

Автономный счетчик газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Автономный счетчик газа содержит вход и...
Тип: Изобретение
Номер охранного документа: 0002507483
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a743

Устройство для измерения геометрического размера диэлектрической частицы

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и...
Тип: Изобретение
Номер охранного документа: 0002508534
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b945

Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости...
Тип: Изобретение
Номер охранного документа: 0002513157
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0ab

Устройство для определения поступательного перемещения

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель...
Тип: Изобретение
Номер охранного документа: 0002515072
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c131

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора и повышении скорости решения задачи о выполнимости булевых функций за счет упрощения структуры...
Тип: Изобретение
Номер охранного документа: 0002515206
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c136

Спецпроцессор для поиска гамильтоновых циклов в графах

Изобретение относится к вычислительной технике и направлено на построение эффективного спецпроцессора, осуществляющего поиск Гамильтонова цикла в графе, заданном матрицей смежностей, хранящейся в памяти. Техническим результатом является увеличение скорости решения задачи отыскания Гамильтонова...
Тип: Изобретение
Номер охранного документа: 0002515211
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c144

Каскадное парафазное логическое устройство

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства. Устройство содержит тактовый КМДП инвертор и в каждом каскаде два транзистора сброса...
Тип: Изобретение
Номер охранного документа: 0002515225
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2ae

Способ организации и ведения медицинского мониторинга

Изобретение относится к способу организации и ведения медицинского мониторинга данных состояния пациентов. Технический результат заключается в повышении эффективности и надежности мониторинга и диагностики состояния пациентов. В способе на каждого пациента формируют несколько электронных карт,...
Тип: Изобретение
Номер охранного документа: 0002515587
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c317

Тактируемый логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа,...
Тип: Изобретение
Номер охранного документа: 0002515702
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c405

Инерционный магнитоэлектрический генератор

Изобретение относится к электротехнике и может служить автономным источником питания для различных систем. Технический результат состоит в получении высоких удельных показателей генерации электрических сигналов с величиной, достаточной для электропитания различных электротехнических устройств...
Тип: Изобретение
Номер охранного документа: 0002515940
Дата охранного документа: 20.05.2014
Showing 11-20 of 86 items.
20.01.2014
№216.012.9880

Устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагаемое устройство определения уровня...
Тип: Изобретение
Номер охранного документа: 0002504739
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9881

Способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002504740
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9f85

Способ определения массы сжиженного углеводородного газа в резервуаре

Изобретение относится к области измерительной техники и может быть использовано для определения массы сжиженного углеводородного газа, содержащегося в резервуаре. Предлагается способ определения массы сжиженного углеводородного газа в резервуаре, при котором измеряют электрическую емкость...
Тип: Изобретение
Номер охранного документа: 0002506545
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b36a

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение относится к измерительной технике, в частности, оно может быть применено для измерения массы криогенных жидкостей в металлических емкостях. Предлагается способ определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений излучают...
Тип: Изобретение
Номер охранного документа: 0002511646
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0ad

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002515074
Дата охранного документа: 10.05.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
27.11.2014
№216.013.0be2

Расходомер

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль...
Тип: Изобретение
Номер охранного документа: 0002534450
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d02

Устройство для измерения физических свойств жидкости в емкости

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии,...
Тип: Изобретение
Номер охранного документа: 0002534747
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1285

Устройство для определения концентрации смеси веществ

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Устройство для определения концентрации смеси веществ содержит установленный на измерительном участке...
Тип: Изобретение
Номер охранного документа: 0002536164
Дата охранного документа: 20.12.2014
+ добавить свой РИД