×
21.11.2019
219.017.e413

Результат интеллектуальной деятельности: Автоподстроечный способ измерения малого значения уровня вещества

Вид РИД

Изобретение

№ охранного документа
0002706453
Дата охранного документа
19.11.2019
Аннотация: Изобретение относится к области информационно-измерительной техники. Техническим результатом предлагаемого способа является упрощение процедуры измерения уровня вещества. Технический результат достигается тем, что в автоподстроечном способе измерения малого значения уровня вещества, включающем зондирование поверхности контролируемого вещества электромагнитными волнами и образование интерференции зондирующих и отраженных от поверхности вещества электромагнитных волн, измеряют частоту излучения зондирующих электромагнитных волн при одном определенном значении уровня вещества, изменяют частоту излучения зондирующих электромагнитных волн в зависимости от знака изменения уровня до достижения второго определенного уровня вещества, измеряют частоту излучения зондирующих электромагнитных волн при втором определенном значении уровня вещества и по отношению измеренных частот, соответствующих первому и второму определенным значениям уровня вещества, определяют величину уровня вещества. 1 ил.

Изобретение относится к области измерительной технике и может быть использовано для измерения уровня сыпучих и жидких веществ в технологических емкостях.

Известно устройство, реализующий интерференционный высокочастотный измеритель уровня (см. RU 2101684 С1, 10.01.1998), содержащее генератор фиксированной частоты, к выходу которого подключена передающая антенна, приемную антенну, подключенную к входу преобразователя частоты, фильтр нижних частот, малошумящий усилитель, соединенный с фильтром верхних частот и цифровой индикатор.

Устройство работает следующим образом. Колебания от генератора фиксированной частоты поступают на передающую антенну и излучаются в свободное пространство. Приемной антенной принимается сигнал от передатчика и отраженный от контролируемой среды сигнал. В результате сложения двух волн возникает интерференция. Принятые приемной антенной сигналы поступают на вход преобразователя частоты. Низкочастотная составляющая разности частот полезного сигнала и сигнала внутреннего гетеродина преобразователя частоты выделяется фильтром нижних частот и усиливается малошумящим усилителем. С выхода малошумящего усилителя сигнал через фильтр верхних частот подается на детектор, детектируется и поступает на вход цифрового индикатора. По показаниям цифрового индикатора судят об уровне измеряемой среды.

Недостатком этого технического решения можно считать низкую точность измерения из-за нестабильности полосы пропускания фильтров нижних и верхних частот.

Наиболее близким техническим решением к предлагаемому, является принятый автором за прототип способ измерения уровня веществ в емкости (см. RU 2629706 С1, 31.08.2017), включающий зондирование поверхности вещества частотно-модулированными волнами в фиксированном диапазоне частот, прием отраженных волн после их многократного последовательного зондирования и отражения от веществ и образование стоячей волны из отраженных и зондирующих электромагнитных волн. В этом способе по числу соответствующих им при девиации частоты типов возбуждаемых электромагнитных колебаний в образуемом резонаторе судят об уровне веществ.

К недостатку этого известного способа можно отнести сложность в подсчете чисел типов возбуждаемых электромагнитных колебаний в образуемом резонаторе ввиду нестабильности девиации частоты.

Техническим результатом предлагаемого способа является упрощение процедуры измерения уровня вещества.

Технический результат достигается тем, что в автоподстроечном способе измерения малого значения уровня вещества, включающем зондирование поверхности контролируемого вещества электромагнитными волнами и образование интерференции зондирующих и отраженных от поверхности вещества электромагнитных волн, измеряют частоту излучения зондирующих электромагнитных волн при одном определенном значении уровня вещества, изменяют частоту излучения зондирующих электромагнитных волн в зависимости от знака изменения уровня до достижения второго определенного уровня вещества, измеряют частоту излучения зондирующих электромагнитных волн при втором определенном значении уровня вещества, и по отношению измеренных частот, соответствующих первому и второму определенным значениям уровня вещества, определяют величину уровня вещества.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при интерференции зондирующих и отраженных электромагнитных волн, вычисление отношения измеренных частот излучения зондирующих электромагнитных волн дает возможность измерить уровень вещества.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу измерения уровня вещества на основе вычисления отношения измеренных частот излучения зондирующих электромагнитных волн при интерференции, зондирующих и отраженных электромагнитных волн, с желаемым техническим результатом, т.е. упрощением процедуры измерения уровня вещества.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных волн 1 с возможностью автоподстройки частоты излучения, тройник 2, частотомер 3, направленный ответвитель 4, амплитудный детектор 5, приемо-передающую рупорную антенну 6 и вольтметр постоянного тока 7. Цифрой 8 на рисунке обозначена поверхность вещества.

Предлагаемый способ работает следующим образом. Способ основывается на интерференционной картине зондирующих поверхность вещества и отраженных от нее электромагнитных волн и автоподстройке частоты излучения зондирующих волн.

Из теории распространения электромагнитных волн известно, что если при падении электромагнитной волны на поверхность среды, от нее отражается волна, то в таком случае, сложение падающей и отраженной волн, приводит к возникновению стоячей волны в пространстве между зондируемой средой и излучателем волны. Стоячая волна, как правило, в определенных точках имеет как пучности амплитуды, так и узлы амплитуды. При перемещении контролируемой среды относительно излучателя (излучатель неподвижен) амплитуда стоячей волны будет изменяться от узла до пучности и наоборот. При этом изменение амплитуды от узла к пучности будет иметь возрастающий характер, а - от пучности к узлу убывающий.

Пусть длина интерференционной картины (стоячая волна) равна одной длине λ зондирующей электромагнитной волны. Другими словами расстояние между неподвижным излучателем и поверхностью вещества соответствует λ. Если предположить, что отсчет идет, например, от поверхности вещества к излучателю, т.е. поверхность вещества занимает место первого узла стоячей волны, а излучатель - третьего узла стоячей волны, то в этом случае амплитуда стоячей волны будет иметь минимальное значение. При приближении вещества к излучателю (уменьшение уровня), в точке, равной λ/4, амплитуда стоячей волны окажется максимальной. Следовательно, при дальнейшем нахождении поверхности вещества в точках λ/2 и λ, амплитуда стоячей волны - минимальная, а в точке 3λ/4 - максимальная. Отсюда следует, что при изменении уровня вещества от λ=0 до λ=λ/4 по однозначному возрастанию амплитуды стоячей волны можно судить об уменьшении уровня вещества, а при - от λ=λ/4 до λ=λ/2 по убыванию амплитуды и т.

В предлагаемом способе преобразование малого значения уровня вещества в амплитуду стоячей волны с одновременным изменением частоты излучения зондирующих волн, далее используется для измерения уровня вещества. В силу этого, если допускать, что ℓ1 это расстояние (уровень) от поверхности вещества до точки, соответствующей, например, λ1/4, т.е. ℓ11/4, то в этой точке, максимальное значение амплитуды стоячей волны определяет величину расстояния. Согласно данному способу путем изменения частоты излучения зондирующих волн можно добиться того, что максимум амплитуды стоячей волны соответствовала другому значению расстояния, например, ℓ22/4 (другая точка). Отсюда вытекает возможность вычисления изменения расстояния путем слежения за максимумом амплитуды стоячей волны. В рассматриваемом случае слежение за максимумом амплитуды стоячей волны можно осуществить автоподстройкой частоты излучения зондирующих электромагнитных волн.

В общем виде для зависимостей расстояния от λ/4, например, в двух точках, с учетом укладывающейся в пространстве между излучателем и поверхностью вещества четверти длины волны n (n=1,3,5,,,) можно принимать:

1=nλ1/4 (1);

2=nλ2/4 (2).

Здесь λ1 и λ2 - длины волн с частотами излучения f1 и f2 соответственно.

Преобразование полученных выражений (1) и (2) с учетом λ=c/f, где f - частота излучения электромагнитных волн, с - скорость распространения электромагнитной волны в свободном пространстве, дает возможность записать

2=ℓ1⋅f1/f2 (3).

Отсюда видно, что если сначала измерить частоту излучения зондирующих волн при одном значении расстояния ℓ1 (известного), соответствующем определенному уровню вещества и равном λ1/4 (исходное положение уровня) и потом измерить частоту излучения зондирующих волн после ее подстройки при другом значении расстояния ℓ2 (неизвестного), соответствующем определенному уровню вещества, равном λ2/4, то отношение этих измеренных частот даст возможность вычислить уровень вещества. Здесь за ℓ1 принимается расстояние между излучателем и поверхностью вещества (исходное), а за ℓ2 - расстояние между излучателем и поверхностью вещества в контролируемой точке. При этом при отсчете уровня от поверхности вещества в сторону излучателя (уменьшение расстояния между излучателем и поверхностью вещества), частота излучения зондирующих волн должна увеличиваться, а при увеличении расстояния между излучателем и поверхностью вещества - уменьшаться.

Проиллюстрируем изменение уровня вещества, например, при λ1=10 ГГц; n=11 и ℓ2=8 см. В этом случае ℓ1=8,25 см. Тогда согласно последнему выражению, частота, при которой будет измеряться расстояние 8 см, составляет 10,32 ГГц. Другой пример, например, при λ1=10 ГГц; n=11 и ℓ1=8,25, измеренная в контролируемой точке частота f2=9,5 ГГц. Тогда ℓ2=8,69 см.

Устройство, реализующее предлагаемый способ, работает следующим образом. С выхода генератора электромагнитных волн 1 излучение поступает на первое плечо тройника 2. После деления мощности излучения в тройнике, излучения снимаются с его второго и третьего плеч. При этом снимаемый со второго плеча сигнал поступает на вход частотомера 3, а сигнал - с третьего плеча - на первое плечо направленного ответвителя 4. Через второе плечо направленного ответвителя, сигнал передается на приемо-передающую рупорную антенну 6. С помощью этой рупорной антенны, излучение направляют на поверхность 8 контролируемого вещества. Отраженная волна от поверхности вещества, в результате сложения с падающей (зондирующей) волной, образует стоячую волну (интерференционная картина), которая далее с помощью третьего плеча направленного ответвителя улавливается амплитудным детектором 5. Согласно работе данного устройства при зондировании поверхности вещества электромагнитными волнами, сначала частотомером вычисляют частоту излучения (f1) зондирующих волн и затем показанием вольтметра 7, подключенного к выходу амплитудного детектора, фиксируют наличие стоячей волны между приемо-передающей антенной и поверхностью вещества. После этого с учетом измеренной частоты излучения зондирующих волн, определяют соответствующую длину (λ1) этих волн и при нулевом значении уровня вещества (исходное значение) перемещают приемо-передающую антенну относительно поверхности вещества (контролируемая среда неподвижна) таким образом, чтобы значение продектированного сигнала, измеренного вольтметром, было максимальным. Другими словами, отсчет уровня вещества в данном случае должен начинаться с расстояния ℓ1, равного nλ1/4, где n=1,3, 5,,, λ1 - длина зондирующих волн. При изменении уровня вещества (приемо-передающая антенна неподвижна) производят слежение за максимум амплитуды стоячей волны (показание вольтметра) посредством изменения частоты излучения зондирующих волн. В результате, для вычисления уровня вещества, в какой-нибудь точке, измеряется частота излучения (f2) зондирующих волн, и по формуле (3), при известном значении ℓ1, определяется искомая величина уровня вещества.

Таким образом, в предлагаемом техническом решении слежение за максимум амплитуды стоячей волны посредством автоподстройки частоты излучения зондирующих волн, дает возможность упростить процедуру измерения уровня вещества.

Данный способ успешно может быть использован в металлургии для измерения уровня расплавленного металла в промежуточных емкостях при их заполнении и опорожнении.

Автоподстроечный способ измерения малого значения уровня вещества, включающий зондирование поверхности контролируемого вещества электромагнитными волнами и образование интерференции зондирующих и отраженных от поверхности вещества электромагнитных волн, отличающийся тем, что измеряют частоту излучения зондирующих электромагнитных волн при одном определенном значении уровня вещества, изменяют частоту излучения зондирующих электромагнитных волн в зависимости от знака изменения уровня до достижения второго определенного уровня вещества, измеряют частоту излучения зондирующих электромагнитных волн при втором определенном значении уровня вещества и по отношению измеренных частот, соответствующих первому и второму определенным значениям уровня вещества, определяют величину уровня вещества.
Автоподстроечный способ измерения малого значения уровня вещества
Автоподстроечный способ измерения малого значения уровня вещества
Источник поступления информации: Роспатент

Showing 21-30 of 276 items.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
Showing 11-14 of 14 items.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
+ добавить свой РИД