×
08.11.2019
219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа М

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок. При прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц. Величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%. Изобретение позволяет получать гексагональные поликристаллические ферриты бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры.

Известны способы получения поликристаллических гексагональных ферритов бария и стронция, включающие смешивание оксида бария (оксида стронция) с оксидом железа в соответствующих пропорциях, сухой и мокрый помол, ферритизацию порошка, прессование заготовок из измельченной шихты и спекание (см. Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: МИСиС, 2005. - 352 с.). Указанные способы не позволяют изготовлять анизотропные гексаферриты бария и стронция.

Наиболее близким к предложенному техническому решению является «Способ изготовления анизотропного стронциевого феррита» (см. Андреев В.Г., Гончар А.В., Летюк Л.М., Меньшова С.Б. и Егоров Р.Н. Патент РФ №2256534. Опубликовано 20.07.2005 г. Бюл. №20). Однако указанный способ требует высоких магнитных полей и не всегда позволяет получить требуемое значение степени магнитной текстуры.

Техническим результатом изобретения являлось получение гексагональных поликристаллических ферритов бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля.

Технический результат достигается следующим образом.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ.

Изобретение поясняется фигурами, где фиг. 1 - фотографии порошка гексаферрита бария, полученного методом химического соосаждения при различных увеличениях, и фиг. 2 - фотографии порошка гексаферрита стронция, полученного методом химического соосаждения при различных увеличениях.

Сущность изобретения состоит в следующем. Метод химического соосаждения позволяет получить порошок гексаферрита в виде наночастиц размером 60-140 нм. При прессовании заготовки в магнитном поле частицы гексаферрита, имея вид пластинок в виде гексагонов, ориентируются в магнитном поле, создавая таким образом магнитную текстуру в образце. Наноразмерные частицы для полной ориентации в магнитном поле требуют существенно меньшие значения магнитного поля.

Изобретение реализуется следующим образом.

Из порошков гексаферритов прессовали сырые заготовки с формами шайб диаметром 10 мм и толщиной 3,0 мм. Давление прессования составляло 8 МПа. Благодаря технологии химического соосаждения полученные наночастицы требуют меньшие значения магнитного поля, поэтому намагничивающее поле в конце прессования составляет 6-7 кЭ, а не 10 кЭ и выше, как при классической технологии. Дополнительное воздействие на порошок ультразвуком в ходе прессования в постоянном магнитном поле обеспечивает повышение степени ориентации частиц гексаферрита. При интенсивных колебаниях наноразмерных частиц 60-140 нм в интервале частот 0,5-2,0 МГц снижается межчастичное взаимодействие. После прессования сырые заготовки сушились в естественных условиях, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Степень магнитной текстуры образцов оценивалась по формуле:

где: D - степень магнитной текстуры в процентах; и Br// - остаточная магнитная индукция поперек и вдоль оси текстуры соответственно.

Частотный диапазон ультразвука используемого ультразвука выбран, исходя из следующих соображений. При использовании частоты ультразвука меньше 0,5 МГц получаемые образцы обладают пониженными значениями магнитных параметров. При использовании ультразвука с частотой больше 2,0 МГц падает степень магнитной текстуры полученных образцов.

Пример 1. Порошок бариевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Костишин В.Г., Тимофеев А.В., Читанов Д.Н. Особенности получения наноразмерных порошков гексаферритов бария BaFe12O19 методом прекурсора в полимере. Химическая технология, 2018, №1. - С. 11-15.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Кожитов Л.В., Козлов В.В. Способ получения наноразмерных частиц гексаферрита бария. Патент РФ №2611442. Опубликовано 22.02.2017 г. Бюллетень №6).

Для порошка бариевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 1).

На основе имеющегося порошка BaFe12O19 была спрессована сырая заготовка. Она имела форму шайбы диаметром 10 мм и толщиной 3,0 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,7 кЭ с дополнительным воздействием ультразвука частотой 0,5 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 1, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов удается достичь магнитной текстуры ~ 91%, что на 22% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Пример 2. Порошок стронциевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Kostishyn V.G., Timofeev A.V., Chitanov D.N. Obtaining of nanostructured powders of barium and strontium hexaferrite by the polymer precursor method. Journal of Nano-and Electronic Physics, 2015, vol. 7, Issue 4. - P. 04066.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Панина Л.В. Способ получения наноразмерных частиц гексаферрита стронция. Патент РФ №2612289. Опубликовано 06.03.2017 г. Бюллетень №7).

Для порошка стронциевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 2).

Порошок SrFe12O19 был спрессован в сырую заготовку. Она представляла собой шайбу диаметром 10 мм и толщиной 3 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,5 кЭ с дополнительным воздействием ультразвука частотой 1,1 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 2, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов стронция удается достичь магнитной текстуры ~ 89%, что на 23% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%.
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Источник поступления информации: Роспатент

Showing 21-30 of 322 items.
10.06.2016
№216.015.481e

Интегральная схема силового биполярно-полевого транзистора

Изобретение относится к силовым полупроводниковым приборам и биполярным интегральным схемам. Изобретение обеспечивает повышение быстродействия, уменьшение энергетических потерь при переключении, упрощение технологии изготовления. Интегральная схема силового биполярно-полевого транзистора...
Тип: Изобретение
Номер охранного документа: 0002585880
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aa1

Способ дефосфорации марганцевых руд и концентратов

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав. Может быть использован газообразный монооксид углерода, полученный в газогенераторе и...
Тип: Изобретение
Номер охранного документа: 0002594997
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.62ef

Способ переработки сульфидных никелевых концентратов

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при...
Тип: Изобретение
Номер охранного документа: 0002588904
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
Showing 21-30 of 50 items.
13.01.2017
№217.015.8db2

Устройство для прессования порошковых материалов изделий электронной техники

Изобретение относится к прессованию изделий электронной техники из порошкового материала. Устройство содержит расположенное горизонтально основание пресса, нижний пуансон, размещенный основанием на горизонтальной поверхности основания пресса, и верхний пуансон, матрицу с замкнутой рабочей...
Тип: Изобретение
Номер охранного документа: 0002604552
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b435

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Мокрое измельчение стехиометрической смеси карбоната бария и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при следующем...
Тип: Изобретение
Номер охранного документа: 0002614005
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba4a

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита бария больше 230 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002615562
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.e03c

Способ изготовления композиционного материала для изделий электронной техники свч

Изобретение относится к изготовлению композиционного материала для изделий электронной техники СВЧ на основе металлической матрицы в виде алюминиевого сплава и неметаллического наполнителя в виде карбида кремния. Способ включает уплотнение в разъемной пресс-форме шликерным литьем смеси фракций...
Тип: Изобретение
Номер охранного документа: 0002625377
Дата охранного документа: 13.07.2017
+ добавить свой РИД