×
07.11.2019
219.017.deea

Оптический спектрометр с волоконным входом для оптической когерентной томографии

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптической интерферометрии и может быть использовано для создания оптического спектрометра, нечувствительного к состоянию поляризации регистрируемого излучения. Оптический спектрометр с волоконным входом для оптической когерентной томографии содержит последовательно расположенные входное волокно с деполяризующим элементом, коллиматор, дисперсионный оптический элемент, фокусирующий элемент, фотоприемник линейного типа. При этом деполяризующий элемент выполнен в виде двух отрезков поляризационно-удерживающего волокна различной длины, при этом длины и разность длин этих двух отрезков больше либо равны отношению длины когерентности регистрируемой спектральной компоненты к разности показателей преломления поляризационно-удерживающего волокна для собственных поляризационных мод, причем поляризационные моды второго отрезка повернуты на 45 градусов относительно поляризационных мод первого отрезка. Технический результат заключается в улучшении характеристик выходного сигнала. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к оптической интерферометрии, в частности к спектральной рефлектометрии и оптической когерентной томографии, и может быть использовано для создания оптического спектрометра, нечувствительного к состоянию поляризации регистрируемого излучения.

Оптическая интерферометрия, предполагающая регистрацию оптических спектров интерферирующих волн в широком спектральном диапазоне (десятки процентов центральной длины волны), предназначена для построения пространственно-разрешенных изображений внутренней структуры рассеивающих сред, в первую очередь, биологических. Регистрация оптических спектров осуществляется с использованием спектрометра, содержащего дисперсионный элемент, коэффициент пропускания которого, в общем случае, зависит от состояния поляризации регистрируемого излучения (поляризационная зависимость пропускания). Перемещение ОКТ зонда с оптическим трактом из одномодового волокна меняет состояние поляризации проходящего по нему оптического излучения. Соответственно меняется и состояние поляризации регистрируемого спектрометром излучения. Это приводит к изменению величины регистрируемого спектрометром сигнала из-за поляризационной зависимости коэффициента пропускания. Поскольку величина регистрируемого сигнала содержит диагностическую информацию, то ее изменение, обусловленное причинами, отличными от изменения свойств зондируемой среды, может пагубно влиять на диагностическую ценность такой информации.

По патенту US 7817274 «Compact spectrometer» публ. от 19.10.2010 г., МПК G01J 3/28 известен оптический спектрометр с волоконным входом, содержащий входное волокно, коллиматор, дисперсионный оптический элемент в виде дифракционной решетки, фокусирующий элемент и детектор. Дифракционная решетка имеет зависимость эффективности дифракции от поляризации падающего на нее излучения. Таким образом, изменение поляризации излучения на входе приводит к изменению величины выходного сигнала. Недостатком устройства - аналога является чувствительность к поляризации входного излучения.

Ближайшим аналогом разработанного спектрометра с волоконным входом для оптической когерентной томографии является устройство, известное по публикации Tong Wu, Shuaishuai Sun, Xuhui Wang, Haiyan Zhang, Chongjun He, Jiming Wang, Xiaorong Gu, Youwen Liu, Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography // Optics Communications, Volume 405, pp. 171-176, 2017. Описанный в устройстве - прототипе оптический спектрометр с волоконным входом для оптической когерентной томографии содержит входное волокно, коллиматор, дисперсионный оптический элемент, фокусирующий элемент и фотоприемник линейного типа.

Опорное и анализируемое излучения по входному оптическому волокну поступают на коллиматор, который формирует параксиальный оптический пучок. Затем этот пучок излучения подается на дисперсионный элемент, который представляет собой последовательно расположенные дифракционную решетку и призму. На выходе дисперсионного элемента спектральные компоненты имеют угол распространения, определяемый оптической частотой излучения. Разделенные таким образом по углу распространения спектральные компоненты, проходя через фокусирующий элемент, фокусируются в плоскости фотоприемника линейного типа.

Дисперсионный оптический элемент имеет различные коэффициенты пропускания для поляризационных компонент излучения, вектор колебания напряженности электрического поля которых перпендикулярен плоскости падения параксиального оптического пучка на дисперсионный элемент и для компонент излучения, вектор колебания напряженности электрического поля которых лежит в плоскости падения параксиального оптического пучка на дисперсионный элемент. При прохождении через дисперсионный оптический элемент одна из поляризационных компонент имеет большие потери (поляризационно-зависимые), чем другая. Это приводит к тому, что при изменении состояния поляризации регистрируемого излучения, обусловленного изгибными деформациями одномодового волокна оптического тракта зонда, происходит изменение уровня сигнала, прошедшего через дисперсионный оптический элемент и регистрируемого затем фотоприемником линейного типа, не связанное с изменением свойств исследуемого объекта. Как следствие, это приводит к искажению получаемых изображений, что совершенно недопустимо при получении изображений биологических объектов в диагностических целях.

Недостатком устройства - прототипа является чувствительность спектрометра к состоянию поляризации регистрируемого излучения.

Задачей, на решение которой направлено настоящее изобретение, является разработка оптического спектрометра с волоконным входом для оптической когерентной томографии, с улучшенными характеристиками регистрации сигнала, а именно повышением достоверности регистрируемого сигнала, связанным с нечувствительностью спектрометра к упругим изгибным деформациям во входном волокне, вызывающим изменение состояния поляризации регистрируемого излучения.

Указанный технический результат достигается благодаря тому, что разработанный оптический спектрометр с волоконным входом для оптической когерентной томографии так же, как и ближайший аналог, содержит последовательно расположенные входное волокно, коллиматор, дисперсионный оптический элемент, фокусирующий элемент, фотоприемник линейного типа.

Новым в разработанном устройстве является то, что входное волокно содержит деполяризующий элемент, выполненный в виде двух отрезков поляризационно-удерживающего волокна различной длины, при этом длины и разность длин этих двух отрезков больше либо равны отношению длины когерентности регистрируемой спектральной компоненты к разности показателей преломления поляризационно-удерживающего волокна для собственных поляризационных мод, причем поляризационные моды второго отрезка повернуты на 45 градусов относительно поляризационных мод первого отрезка.

В частном случае в разработанном оптическом спектрометре с волоконным входом для оптической когерентной томографии длины отрезков поляризационно-удерживающего волокна относятся друг к другу как 1:2.

На фиг. 1 представлена схема реализации разработанного оптического спектрометра с волоконным входом для оптической когерентной томографии.

На фиг. 2 представлена схема деполяризующего элемента, поясняющая принцип его действия.

Оптический спектрометр с волоконным входом по фиг. 1 содержит входное волокно 1, деполяризующий элемент 2, коллиматор 3, дисперсионный оптический элемент 4, фокусирующий элемент 5 и фотоприемник линейного типа 6.

Регистрируемое излучение проходит по входному волокну 1 и поступает на деполяризующий элемент 2. Деполяризующий элемент 2 взаимодействует с отдельными поляризационными компонентами излучения, формируя на выходе излучение, имеющее одинаковые проекции на собственные оси дисперсионного оптического элемента 4. Сформированное деполяризованное излучение поступает на коллиматор 3, где преобразуется в параксиальный оптический пучок. Параксиальный оптический пучок поступает на дисперсионный оптический элемент 4, где отдельные спектральные компоненты изменяют направление распространения в зависимости от длины волны А, на угол, определяемый свойствами дисперсионного оптического элемента 4. Далее, проходя через фокусирующий элемент 5, оптическая ось которого совпадает с направлением распространения центральной компоненты излучения, излучение фокусируется на фотоприемник линейного типа 6.

Деполяризующий элемент 2 выполнен из двух отрезков поляризационно-удерживающего волокна разной длины, причем поляризационные моды второго отрезка повернуты на 45 градусов относительно поляризационных мод первого отрезка. К тому же длины и разность длин этих отрезков поляризационно-удерживающего волокна больше либо равны отношению длины когерентности регистрируемой спектральной компоненты к разности показателей преломления поляризационно-удерживающего волокна для собственных поляризационных мод.

При распространении излучения по поляризационно-удерживающему волокну (РМ optical fiber) вследствие поляризационной модовой дисперсии две поляризационные компоненты (по медленной и быстрой осям - AS и aF соответственно) распространяются с различными скоростями, определяемыми, соответственно, эффективными показателями преломления для этих мод nS и nF.

При этом каждая из поляризационных мод при прохождении первого отрезка поляризационно-удерживающего волокна проходит оптический путь, равный произведению длины L1 отрезка поляризационно-удерживающего волокна на показатель преломления для конкретной поляризационной моды (nS и nF соответственно)

Взаимная оптическая разность хода возникающая между быстрой и медленной модами в первом отрезке поляризационно-удерживающего волокна, определяется выражением

При длине отрезка волокна L1, определяемой выражением

где - длина когерентности отдельной спектральной компоненты, регистрируемой спектрометром,

оптическая разность хода возникающая между быстрой и медленной модами, становится больше длины когерентности, и когерентность между поляризационными модами AS и aF теряется.

В случае если мощности поляризационных мод равны (AS=aF) на входе деполяризующего элемента 2, в собственных поляризационных модах поляризационно-удерживающего волокна после прохождения первого отрезка волокна длиной L1 излучение становится деполяризованным. В силу отсутствия интерференции между проекциями поляризационных мод на собственные оси дисперсионного оптического элемента 4 суммарная мощность регистрируемого излучения определяется суммой мощностей отдельных поляризационных компонент и сохраняется неизменной вне зависимости от взаимной ориентации собственных осей поляризационно-удерживающего волокна и дисперсионного оптического элемента 4.

В случае разной исходной мощности поляризационных мод AS и aF выходное излучение на выходе первого отрезка поляризационно-удерживающего волокна сохраняет поляризационную неоднородность. Для устранения этой неоднородности применяется второй отрезок аналогичного волокна другой длины, поляризационные моды которого повернуты на 45 градусов относительно поляризационных мод первого отрезка. В этом случае каждая из собственных мод первого отрезка поляризационно-удерживающего волокна формирует излучение равной мощности в собственных поляризационных модах второго отрезка поляризационно-удерживающего волокна: мода AS формирует моды ASS и ASF, а мода aF - aFS и aFF.

Для выполнения условия формирования деполяризованного излучения необходимо обеспечить отсутствие интерференции между проекциями всех мод на собственные оси дисперсионного оптического элемента 4. То есть необходимо, чтобы задержка между любыми двумя из четырех поляризационных компонент ASS, ASF, aFS, aFF была больше длины когерентности регистрируемой спектральной компоненты. Это условие может быть формализовано в виде соотношения

В частном случае реализации разработанного спектрометра с волоконным входом для оптической когерентной томографии деполяризующий элемент 2 выполнен из двух отрезков поляризационно-удерживающего волокна различной длины при этом эти длины относятся как 1:2, то есть L2=2L1, кроме того длины и разность длин упомянутых двух отрезков больше либо равны отношению длины когерентности регистрируемой спектральной компоненты к разности показателей преломления поляризационно-удерживающего волокна для собственных поляризационных мод, причем поляризационные моды второго отрезка повернуты на 45 градусов относительно поляризационных мод первого отрезка. В этом случае общая длина поляризационно-удерживающего волокна, входящего в состав деполяризующего элемента 2, имеет наименьшее значение.

Таким образом, применение во входном волокне разработанного оптического спектрометра деполяризующего элемента, выполненного в виде двух отрезков поляризационно-удерживающего волокна различной длины, при этом длины и разность длин этих двух отрезков больше либо равны отношению длины когерентности регистрируемой спектральной компоненты к разности показателей преломления поляризационно-удерживающего волокна для собственных поляризационных мод, причем поляризационные моды второго отрезка повернуты на 45 градусов относительно поляризационных мод первого отрезка, позволяет равномерно распределить мощность регистрируемого излучения по проекциям на собственные оси поляризационной анизотропии дисперсионного оптического элемента. В результате разработанный оптический спектрометр с волоконным входом становится нечувствительным к изменению состояния поляризации регистрируемого излучения, связанному, например, с упругими изгибными деформациями во входном волокне. То есть разработанный оптический спектрометр с волоконным входом обладает улучшенными, по сравнению с прототипом, характеристиками выходного сигнала, поскольку обеспечивает повышение достоверности регистрируемого сигнала.


Оптический спектрометр с волоконным входом для оптической когерентной томографии
Оптический спектрометр с волоконным входом для оптической когерентной томографии
Оптический спектрометр с волоконным входом для оптической когерентной томографии
Источник поступления информации: Роспатент

Showing 1-10 of 64 items.
10.07.2016
№216.015.2b18

Изолятор фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности

Изобретение относится к оптической технике для мощных лазерных пучков. Магнитная система в изоляторе Фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности изготовлена с квадратной апертурой путем заполнения ее центральных областей, через которые не проходит...
Тип: Изобретение
Номер охранного документа: 0002589754
Дата охранного документа: 10.07.2016
20.04.2016
№216.015.34ec

Полевой транзистор на осаждённой из газовой фазы алмазной плёнке с дельта-допированным проводящим каналом

Изобретение относится к технике полупроводниковых приборов. В полевом транзисторе на осажденной из газовой фазы алмазной пленке с дельта-допированным проводящим каналом, включающем недопированную алмазную подложку, осажденную на ней из газовой фазы алмазную пленку, состоящую из нанесенных...
Тип: Изобретение
Номер охранного документа: 0002581393
Дата охранного документа: 20.04.2016
20.08.2016
№216.015.4e78

Плазменный свч реактор для газофазного осаждения алмазных пленок в потоке газа (варианты)

Изобретение относится к плазменным СВЧ реакторам для газофазного осаждения алмазных пленок в потоке газа (варианты). Выполнение реактора на основе двух связанных резонаторов - цилиндрического резонатора и прикрепленного к его торцевой стенке круглого коаксиального резонатора, вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002595156
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.75ad

Изолятор фарадея с неоднородным магнитным полем для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности содержит последовательно расположенные...
Тип: Изобретение
Номер охранного документа: 0002598623
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.854c

Изолятор фарадея для неполяризованного лазерного излучения

Изобретение относится к оптической технике, а именно к изоляторам Фарадея для неполяризованного лазерного излучения. Изолятор Фарадея содержит последовательно расположенные на оптической оси поляризационный расщепитель пучка, магнитооптический элемент, установленный в магнитной системе,...
Тип: Изобретение
Номер охранного документа: 0002603229
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8cf1

Способ контактной литотрипсии

Изобретение относится к медицине, хирургии. Осуществляют воздействие на конкремент при контактной литотрипсии. На дистальный конец световода наносят поглощающий, термостойкий, износоустойчивый слой. Используется лазерное излучение, поглощающееся в специально нанесенном на торец волокна слое. В...
Тип: Изобретение
Номер охранного документа: 0002604800
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a2ef

Изолятор фарадея со стабилизацией степени изоляции

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров, подверженных влиянию окружающей среды. Изолятор Фарадея со стабилизацией степени изоляции содержит последовательно расположенные на оптической оси поляризатор,...
Тип: Изобретение
Номер охранного документа: 0002607077
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a340

Способ управления сейсмоакустическими косами и устройство позиционирования для его осуществления

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Предлагается устройство автоматизированного позиционирования (УАП), которое представляет собой тело нейтральной плавучести, корпус которого представляет собой две герметично...
Тип: Изобретение
Номер охранного документа: 0002607076
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b97c

Способ измерения поглощаемой мощности в единице объема плазмы свч разряда в водородсодержащем газе

Изобретение относится к плазменным технологиям, в частности к способам измерения поглощенной мощности в СВЧ-разрядах. При реализации предложенного способа измерения мощности, поглощаемой единицей объема СВЧ-разряда, получают СВЧ-разряд в водородсодержащем газе, фотографируют плазму СВЧ-разряда...
Тип: Изобретение
Номер охранного документа: 0002615054
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bcf8

Способ определения скорости ветра над водной поверхностью

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности. Стыкуют полученные изображения. Определяют...
Тип: Изобретение
Номер охранного документа: 0002616354
Дата охранного документа: 14.04.2017
Showing 1-10 of 14 items.
27.10.2014
№216.013.016e

Способ формирования эквидистантных по оптической частоте отсчетов при спектральном интерференционном приеме рассеянного назад сверхширокополосного излучения

Способ включает регистрацию оптического спектра суммы интерферирующих волн при различных значениях взаимной задержки, выделение модулирующих функций, соответствующих взаимным задержкам, определение нелинейности распределения их фазы, вычисление корректирующей таблицы, регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002531764
Дата охранного документа: 27.10.2014
25.08.2017
№217.015.b94f

Устройство для регистрации изображений кросс-поляризационной низкокогерентной оптической интерферометрии

Заявленная группа изобретений относится к устройствам получения и обработки изображений оптической интерферометрии и может быть использовано для прижизненной визуализации и количественной оценки деполяризующих свойств отдельных участков биологических тканей, в том числе человеческих. Заявленное...
Тип: Изобретение
Номер охранного документа: 0002615035
Дата охранного документа: 03.04.2017
26.08.2017
№217.015.e422

Способ визуализации областей объекта, содержащих микродвижения

Изобретение относится к медицине, а именно к медицинской диагностике, и может быть использовано для получения и обработки изображений оптической интерферометрии. Осуществляют регистрацию набора интерферограмм, при этом сканирование зондирующим лучом осуществляют последовательно в главном и...
Тип: Изобретение
Номер охранного документа: 0002626310
Дата охранного документа: 25.07.2017
20.12.2018
№218.016.a92d

Телецентрический сканирующий объектив

Изобретение может быть использовано в окулярах, для рассматривания изображений микромониторов, а также в устройствах оптической когерентной томографии. Телецентрический сканирующий объектив состоит из трех элементов. Первый элемент - одиночная плосковыпуклая линза, второй и третий элементы...
Тип: Изобретение
Номер охранного документа: 0002675488
Дата охранного документа: 19.12.2018
20.03.2019
№219.016.e370

Интерферометрическое устройство (варианты)

Предложены варианты интерферометрических устройств, предназначенные для исследования внутренней структуры объектов методом оптической когерентной томографии, в которых предусмотрена возможность управления местоположением границы зоны наблюдения, а также предусмотрена возможность коррекции...
Тип: Изобретение
Номер охранного документа: 0002273823
Дата охранного документа: 10.04.2006
04.04.2019
№219.016.fb7d

Способ оценки эффективности фотодинамической терапии методом оптической когерентной ангиографии в эксперименте

Изобретение относится к экспериментальной медицине и может быть использовано для оценки эффективности фотодинамической терапии (ФДТ). Проводят исследование методом оптической когерентной ангиографии (ОКА) с визуальной оценкой состояния кровотока в опухоли, трансплантированной мышам на наружной...
Тип: Изобретение
Номер охранного документа: 0002683858
Дата охранного документа: 02.04.2019
29.06.2019
№219.017.9c83

Способ и устройство спектральной рефлектометрии

Изобретение относится к оптической низкокогерентной рефлектометрии со спектральным способом приема и может быть использовано для получения изображения, свободного от когерентных помех, связанных с наличием самоинтерференции рассеянного от объекта исследования излучения и наличием паразитных...
Тип: Изобретение
Номер охранного документа: 0002399029
Дата охранного документа: 10.09.2010
29.06.2019
№219.017.9f5b

Перестраиваемый частотный селектор

Перестраиваемый частотный селектор содержит резонатор Фабри - Перо с переменной оптической длиной между зеркалами. Размер перетяжки моды резонатора Фабри - Перо составляет несколько длин волн излучения. Перед резонатором Фабри - Перо введен волновод с размером моды несколько длин волн. Моды...
Тип: Изобретение
Номер охранного документа: 0002427062
Дата охранного документа: 20.08.2011
29.06.2019
№219.017.a0c2

Оптическое бездисперсионное фазосдвигающее устройство

Изобретение относится к оптической интерферометрии, в частности к спектральной рефлектометрии, и может быть использовано для одновременного наблюдения интерференционных картин с различными фазовыми соотношениями между интерферирующими волнами. Устройство состоит из по крайней мере двух...
Тип: Изобретение
Номер охранного документа: 0002436138
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.aca6

Оптоволоконное сканирующее устройство

Оптоволоконное сканирующее устройство, содержащее стационарную часть, подвижную часть, линзовую систему и источник управляющего тока. Стационарная часть содержит опорный элемент и магнитную систему, содержащую по меньшей мере один постоянный магнит, а подвижная часть включает в себя...
Тип: Изобретение
Номер охранного документа: 0002319184
Дата охранного документа: 10.03.2008
+ добавить свой РИД