×
24.10.2019
219.017.d96d

Результат интеллектуальной деятельности: Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой жидкости. Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости включает перемешивание частиц путем воздействия ультразвуковых колебаний в погруженном в жидкость сферическом контейнере, выполненном в виде двух вложенных друг в друга полусферических оболочек с возможностью его открытия при вращении одной из оболочек вокруг оси симметрии, введение частиц в кювету с вязкой жидкостью, выполненную из прозрачного материала, и визуализацию процесса осаждения частиц, отличается тем, что сферический контейнер, выполненный из сплошных оболочек, предварительно заполняют водой, перемешивают полидисперсные частицы с водой, причем в процессе перемешивания постепенно вытесняют воду из контейнера вязкой жидкостью с коэффициентом динамической вязкости, соответствующим вязкости жидкости в кювете, при этом время вытеснения воды вязкой жидкостью и время открытия контейнера выбирают в соответствии с соотношениями τ≥(3÷5) минут, а начальную концентрацию частиц в облаке определяют по формуле где τ - время вытеснения воды из контейнера с вязкой жидкостью, с; τ - время открытия контейнера, с; D - диаметр контейнера, м; μ - коэффициент динамической вязкости жидкости, Па⋅с; ρ - плотность материала частиц, кг/м. Техническим результатом изобретения является повышение точности определения основных характеристик и динамики осаждения совокупности полидисперсных частиц. 3 ил., 1 табл.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических и химических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой среде при осаждении в поле силы тяжести.

Процессы гравитационного осаждения облака частиц имеют практическое значение в задачах экологии (очистка водоемов от примесей), в угольной промышленности (гидроподавление пыли в угольных шахтах), в теплоэнергетике (сжигание распыленных топлив), в химической технологии (осадительные колонны) и в ряде других отраслей техники и технологии [1].

Характер движения совокупности твердых частиц при их осаждении в жидкой или газообразной среде существенно зависит от формы облака частиц и их начальной концентрации [2]. Теоретический анализ задачи не позволяет однозначно определить динамику изменения формы, коэффициента сопротивления и, следовательно, скорости осаждения совокупности частиц [3]. Для получения достоверных зависимостей используется, как правило, результаты экспериментальных исследований.

Известны способы исследования закономерностей гравитационного осаждения совокупности твердых частиц в жидкости, основанные на введении частиц в жидкость и их визуализацию при движении [4-6]. Эти способы отличаются механизмом введения в жидкость совокупности частиц.

Известен механический способ введения совокупности частиц, основанный на использовании кассеты и двух пластин, в которых на равных расстояниях просверлено одинаковое количество отверстий [4]. Пластины крепятся к кассете таким образом, что при движении одной из пластин с помощью соленоидов и совмещения отверстий обеих пластин происходит сброс частиц с регулируемым вертикальным расстоянием между частицами.

Известны способы создания сферического облака монодисперсных частиц, основанные на предварительном смачивании частиц рабочей жидкостью, размещении их на поверхности плоского диска в виде сферического сегмента или в полусферических ячейках, выполненных на поверхности диска [7, 8]. При погружении диска в жидкость происходит формирование облака частиц, по форме близкого к сферическому.

Наиболее близким по технической сущности к заявляемому изобретению является способ [9], согласно которому частицы предварительно вводят в сферический контейнер, выполненный в виде двух вложенных полусферических оболочек с перфорированными стенками и перемешивают частицы с жидкостью в контейнере путем воздействия ультразвуковых колебаний. Затем поворотом одной из оболочек открывают контейнер для ввода облака частиц в рабочую жидкость. Данный способ обеспечивает создание сферического облака монодисперсных частиц в жидкости с коэффициентом динамической вязкости не более (глицерин).

Техническим результатом настоящего изобретения является разработка способа исследования процесса гравитационного осаждения сферического облака полидисперсных твердых частиц в жидкости с коэффициентом динамической вязкости (например, силиконовое масло), обеспечивающего равномерное распределение частиц в облаке, нулевую начальную скорость осаждения и заданную начальную концентрацию частиц в облаке.

Технический результат изобретения достигается тем, что разработан способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости, включающий перемешивание частиц путем воздействия ультразвуковых колебаний в погруженном в жидкость сферическом контейнере, выполненном в виде двух вложенных друг в друга полусферических оболочек с возможностью его открытия при вращении одной из оболочек вокруг оси симметрии, введение частиц в кювету с вязкой жидкостью, выполненную из прозрачного материала, и визуализацию процесса осаждения частиц. Сферический контейнер, выполненный из сплошных оболочек, предварительно заполняют водой, перемешивают полидисперсные частицы с водой, причем в процессе перемешивания постепенно вытесняют воду из контейнера вязкой жидкостью с коэффициентом динамической вязкости, соответствующим вязкости жидкости в кювете. Время вытеснения воды вязкой жидкостью и время открытия контейнера выбирают в соответствии с соотношениями

τ1≥(3÷5) минут,

а начальную концентрацию частиц в облаке определяют по формуле

где τ1 - время вытеснения воды из контейнера вязкой жидкостью, с;

τ2 - время открытия контейнера, с;

Dk - диаметр контейнера, м;

- коэффициент динамической вязкости жидкости, Па⋅с;

ρp - плотность материала частиц, кг/м3;

- плотность жидкости, кг/м3;

Dmax - диаметр наиболее крупных частиц, м;

g - ускорение свободного падения, м/с2;

Сo - начальная объемная концентрация частиц;

Ni - количество частиц i-й фракции;

Di - диаметр частиц i-й фракции;

n - количество фракций частиц.

Полученный положительный эффект изобретения обусловлен следующими факторами.

1. Предварительное заполнение контейнера, выполненного из водонепроницаемых (сплошных) оболочек, водой обеспечивают изоляцию полости контейнера от вязкой жидкости в кювете, и позволяет осуществлять перемешивание полидисперсных частиц с водой.

2. Перемешивание частиц с водой обеспечивает равномерное распределение полидисперсных частиц в полости сферического контейнера, поскольку низкий коэффициент динамической вязкости воды позволяет интенсифицировать процесс перемешивания под воздействием ультразвуковых колебаний.

3. Постепенное вытеснение воды из контейнера вязкой жидкостью обеспечивает сохранение равномерного распределения частиц в полости контейнера вплоть до полного замещения воды жидкостью с коэффициентом динамической вязкости, соответствующим вязкости жидкости в кювете. С ростом вязкости жидкости в контейнере подвижность частиц уменьшается, что способствует сохранению равномерного распределения частиц.

4. Время вытеснения воды из контейнера вязкой жидкостью t≥(3÷5) минут определено экспериментально из условия минимального воздействия напора вязкой жидкости, подаваемой в контейнер, на структуру облака частиц в контейнере.

5. Время открытия контейнера выбирают из условия минимальной деформации облака в период открытия. Расстояние, пройденное частицей при осаждении за время τ2, составляет

где u - скорость осаждения частицы.

Условие минимальной деформации облака сформулируем в виде неравенства

где - смещение границы облака за счет осаждения частиц.

Условие (4) означает, что смещение границы облака не превышает 2.5% от его диаметра.

Стационарная скорость осаждения одиночной частицы в вязкой жидкости равна [10]

где Dmax - диаметр наиболее крупной частицы в облаке.

Подставляя (5) в (3), (4), получим условие (1) для определения времени открытия контейнера:

6. Начальная объемная концентрация частиц в контейнере определяется формулой

где Vp - суммарный объем частиц;

Vк - объем контейнера.

Суммарный объем полидисперсных частиц равен

Объем контейнера равен

Подставляя (7), (8) в (6), получим формулу (2):

Пример реализации

Сущность заявляемого изобретения поясняется схемой (Фиг. 1). В контейнер, состоящий из неподвижной 1 и подвижной 2 полусферических оболочек, вводили навеску твердых полидисперсных сферических частиц 3. Подвижная оболочка 2 жестко связана с осью 4, которая может вращаться в подшипниках 5. Вращением оболочки 2 контейнер закрывали (Фиг. 1а) и помещали в кювету с жидкостью. После перемешивания частиц с жидкостью поворотом подвижной оболочки 2 на 180 градусов контейнер открывали (Фиг. 1б). При этом сферическое облако частиц начинало осаждаться в кювете с жидкостью.

Схема установки для исследования процесса осаждения облака частиц приведена на Фиг. 2. Контейнер с частицами размещали в кювете 6 с вязкой жидкостью 7. Через патрубок 8 с вентилем 9 вводили в контейнер воду из емкости 10. После полного заполнения контейнера излишек воды вытеснялся через дренажную трубку 11.

Перемешивание частиц с водой в контейнере проводили воздействием ультразвуковых колебаний от генератора 12 типа УЗГМ-10-22МС. В процессе перемешивания постепенно вытесняли воду вязкой жидкостью, подаваемой в контейнер из емкости 13 через вентиль 14 и патрубок 15. Излишек вязкой жидкости вытеснялся из контейнера через дренажную трубку 11. После полного замещения воды вязкой жидкостью открывали контейнер поворотом подвижной оболочки 2.

Визуализацию процесса осаждения облака частиц проводили с использованием съемки через прозрачные стенки кюветы 6 двумя скоростными цифровыми видеокамерами 16 типа Citius С 100 в двух ракурсах с темпом съемки (50÷100) кадров в секунду. Обработка видеорядов проводилась с использованием компьютера, на который поступала информация с видеокамер. По результатам обработки определялись закономерность эволюции формы облака, изменение его объема, концентрация частиц в облаке, скорость движения центра масс облака и коэффициент сопротивления облака частиц.

Эффективность заявляемого способа подтверждена проведением экспериментов по осаждению полидисперсных твердых сферических частиц в вязкой жидкости. В качестве жидкости использовали силиконовое масло ПМС-10000 В экспериментах использовали стальные шарики (ρр=7748 кг/м3) в диапазоне размеров Dp=(1÷3) мм=(1÷3)⋅10-3 м. (Диаметр наиболее крупного шарика Dmax=3⋅10-3 м).

В качестве примера рассмотрим контейнер диаметром Dk=30 мм=30⋅10-3 м. Проведем расчет времени открытия контейнера по формуле (1):

Для расчета начальной объемной концентрации облака частиц рассмотрим полидисперсную систему из 100 шариков (таблица 1).

В соответствии с формулой (1) начальная объемная концентрация частиц в облаке равна

Варьируя диаметр контейнера, количество фракций частиц n, диаметр Di и количество Ni частиц каждой из фракций можно варьировать начальную концентрацию частиц в широком диапазоне. В частности, на Фиг. 3 приведены видеокадры осаждения бидисперсной системы частиц (шарики D1=1 мм; N1=35; D2=3 мм; N2=35) из контейнера диаметром Dк=15 мм при начальном объеме концентрации частиц С0=0.28.

Таким образом, из приведенного примера следует, что предлагаемый способ обеспечивает достижение технического результата изобретения - позволяет исследовать процесс гравитационного осаждения сферического облака полидисперсных твердых частиц в жидкости с коэффициентом динамической вязкости При этом обеспечиваются равномерное распределение частиц в облаке, нулевая начальная скорость осаждения и заданная начальная концентрация частиц в облаке.

ЛИТЕРАТУРА

1. Романков П.Г., Курочкина М.И. Гидромеханические процессы химической технологии. - Л.: Химия, 1982. - 288 с.

2. Соу С. Гидродинамика многофазных систем. - М.: Мир, 1971. - 536 с.

3. Броунштейн Б.И., Фишбейн Г.А. Гидродинамика, массо- и теплообмен в дисперсных средах. - Л.: Химия, - 1977. - 279 с.

4. Хоргуани В.Г. О характере и скорости падения системы частиц одинаковых размеров // Известия АН СССР. Физика атмосферы и океана. - 1966. - Т. 2, №4. - С. 394-401.

5. Metzger В., Nicolas М., Guazzelli Е. Falling clouds of particles in viscous fluids // Journal of Fluid Mechanics. - 2007. - Vol. 580. - P. 283-301.

6. Daniel W.B., Ecke R.E., Subramanian G., Koch D.L. Clusters of sedimenting high-Reynolds-number particles // Journal of Fluid Mechanics. - 2009. - Vol. 625. - P. 371-385.

7. Патент РФ №2610607, МПК G01N 15/04. Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости / В.А. Архипов, А.С. Усанина, Г.Р. Шрагер. - Опубл. 14.02.2017, Бюл. №5.

8. Патент РФ №2617167, МПК B01L 1/00. Установка для исследования осаждения совокупности твердых частиц в жидкости / В.А. Архипов, А.С. Усанина, Н.Н. Золоторёв. - Опубл. 21.04.2017, Бюл. №12.

9. Патент РФ №2620761, МПК G01N 21/85 Способ исследования осаждения сферического облака твердых частиц в жидкости / В.А. Архипов, А.С. Усанина, С.Н. Поленчук. - Опубл. 29.05.2017, Бюл. №16.

10. Архипов В.А., Усанина А.С. Движение частиц дисперсной фазы в несущей среде. - Томск: Издательский Дом Томского государственного университета, 2014. - 252 с.


Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости
Источник поступления информации: Роспатент

Showing 21-29 of 29 items.
02.10.2019
№219.017.cf04

Судоподъемный комплекс, твердотопливный газогенератор и способ судоподъема

Изобретение относится к судостроению, а именно к судоподъемным и аварийно-спасательным работам. Судоподъемный комплекс содержит траверсу в виде замкнутой трубы, внутренними перегородками разделенной на балластные цистерны, причем, в средних боковых и концевых цистернах установлены...
Тип: Изобретение
Номер охранного документа: 0002700431
Дата охранного документа: 17.09.2019
02.10.2019
№219.017.d13f

Способ определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности

Использование: для определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности. Сущность изобретения заключается в том, что осуществляют измерение силы сопротивления частицы при воздействии на нее газового потока, при этом полую сферическую частицу с пористой...
Тип: Изобретение
Номер охранного документа: 0002700728
Дата охранного документа: 19.09.2019
15.11.2019
№219.017.e288

Установка для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе

Изобретение относится к установке для исследования физических процессов, в частности для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе. Установка включает тонкостенную эластичную оболочку, наполненную жидкостью, устройство для прокалывания...
Тип: Изобретение
Номер охранного документа: 0002705965
Дата охранного документа: 12.11.2019
12.12.2019
№219.017.ec7b

Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа. Устройство состоит из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием...
Тип: Изобретение
Номер охранного документа: 0002708606
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ed48

Способ электронно-лучевой сварки кольцевого соединения тонкостенной обечайки с цилиндрической крышкой, выполненных из высокопрочных алюминиевых сплавов

Изобретение относится к способу электронно-лучевой сварки кольцевого соединения тонкостенных конструкций из высокопрочных алюминиевых сплавов и может быть использовано для изготовления легких конструкций с высокими требованиями по прочности и герметичности. В периферийной части верхней...
Тип: Изобретение
Номер охранного документа: 0002708724
Дата охранного документа: 11.12.2019
20.04.2020
№220.018.1626

Устройство для определения скорости испарения капли

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком. Устройство включает ультразвуковой левитатор, фиксирующий каплю в...
Тип: Изобретение
Номер охранного документа: 0002719264
Дата охранного документа: 17.04.2020
04.05.2020
№220.018.1b84

Способ литья в кокиль для получения плоских отливок из алюминиевых и магниевых сплавов

Изобретение относится к области литейного производства и может быть использовано для получения образцов плоских отливок из алюминиевых и магниевых сплавов. Способ включает нанесение защитного покрытия на внутренние стенки кокиля, сборку кокиля, заливку металла в кокиль, охлаждение металла,...
Тип: Изобретение
Номер охранного документа: 0002720331
Дата охранного документа: 28.04.2020
24.06.2020
№220.018.2a2c

Способ определения скорости испарения группы капель

Изобретение относится к области разработки способов для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком. Способ определения скорости испарения группы капель включает измерение...
Тип: Изобретение
Номер охранного документа: 0002724140
Дата охранного документа: 22.06.2020
24.07.2020
№220.018.3641

Линейный шаговый пьезоэлектрический двигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002727610
Дата охранного документа: 22.07.2020
Showing 41-50 of 71 items.
21.02.2019
№219.016.c559

Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ...
Тип: Изобретение
Номер охранного документа: 0002680359
Дата охранного документа: 19.02.2019
01.03.2019
№219.016.d0cf

Способ измерения интегрального коэффициента излучения поверхности теплозащитных материалов

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. Согласно заявленному способу в предварительно нагретый цилиндрический образец теплозащитного материала, размещенного в вакуумированной камере, устанавливается...
Тип: Изобретение
Номер охранного документа: 0002468360
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
03.04.2019
№219.016.fac7

Способ управления движением сложной формации группы космических аппаратов

Изобретение относится к управлению движением вращающейся связки космических аппаратов (КА). Способ включает переориентацию в пространстве маршевой двигательной установки (МДУ), расположенной в центре вращения связки и связанной тросами с КА. Концы тросов закрепляют на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002683700
Дата охранного документа: 01.04.2019
06.04.2019
№219.016.fda1

Способ стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке

Изобретение относится к управлению движением космических аппаратов. В способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного...
Тип: Изобретение
Номер охранного документа: 0002684022
Дата охранного документа: 03.04.2019
19.04.2019
№219.017.30f3

Способ получения металлизированного твердого топлива

Изобретение относится к области разработки металлизированных смесевых твердых топлив. Способ включает механическое перемешивание окислителя, горючего-связующего и металлического горючего. В качестве окислителя используют перхлорат аммония с размером частиц не более 50 мкм или нитрат аммония с...
Тип: Изобретение
Номер охранного документа: 0002415906
Дата охранного документа: 10.04.2011
23.04.2019
№219.017.36b3

Бронебойный активно-реактивный снаряд

Изобретение относится к боеприпасам, а именно к бронебойным активно-реактивным снарядам - БАРС. Технический результат - повышение эффективности бронепробиваемости при одновременном повышении точности стрельбы. Устройство содержит боевой элемент, включающий сердечник и корпус, гиперзвуковой...
Тип: Изобретение
Номер охранного документа: 0002685610
Дата охранного документа: 22.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.706d

Способ получения керамических изделий на основе порошков оксидов металлов

Изобретение относится к получению керамических деталей аддитивным нанесением слоев затвердевающей термопластичной суспензии. Используют термопластичную суспензию, содержащую порошок на основе системы диоксид циркония - диоксид иттрия (ZrO - YO) и парафин, и/или церезин, и/или воск с добавками...
Тип: Изобретение
Номер охранного документа: 0002689833
Дата охранного документа: 29.05.2019
07.06.2019
№219.017.756c

Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной...
Тип: Изобретение
Номер охранного документа: 0002690802
Дата охранного документа: 05.06.2019
+ добавить свой РИД