×
19.10.2019
219.017.d82b

Результат интеллектуальной деятельности: Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно

Вид РИД

Изобретение

Аннотация: Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно используется в спектрометрии газов и плазмы электрических разрядов. С помощью электрода, расположенного на внешней стороне стеклянного баллона газоразрядной лампы, и металлизированного наконечника оптоволокна формируют электрическое поле особой формы и небольшую область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна, что позволяет осуществлять ввод излучения в оптоволокно без использования дополнительных оптических элементов. Технический результат – упрощение ввода излучения в оптоволокно. 3 ил.

Изобретение относится к области оптического приборостроения и может быть использовано в спектрометрии газов и плазмы электрических разрядов.

В спектрометрии газов и особенно плазмы электрических разрядов в качестве источников зондирующего оптического излучения наряду с лазерами используются газоразрядные лампы низкого давления. Для большей конструкционной гибкости и удобства эксплуатации в таких источниках доставку оптического излучения к объекту исследования выполняют с помощью оптоволокна (Kebabian P. L., Berkoff Т. A., Freedman A. Water vapour sensing using polarization selection of a Zeeman-split argon discharge lamp emission line //Measurement Science and Technology. - 1998. - T. 9. - №. 11. - C. 1793-1796). Поэтому в источниках излучения на основе газоразрядных ламп предусматриваются специальные узлы стыковки с оптоволокном. С точки зрения простоты изготовления и надежности работы самым оптимальным является прямой ввод, когда оптоволокно непосредственно примыкает к стеклянному баллону лампы. Подобный способ стыковки обеспечивает достаточный уровень ввода только при условии, что светящийся газ сконцентрирован в небольшом объеме, который расположен вблизи торца оптоволокна.

Известен способ ввода излучения газоразрядных ламп со встроенными электродами в оптоволокно, используемый в лампе для спектральной калибровки AvaLight-CAL (http://www.avantes.ru/pdf/AvaLight-CAL_Manual.pdf), в котором оптоволокно примыкает непосредственно к стеклянному баллону лампы. Свечение газа в них сконцентрировано в узком промежутке между электродами, а интенсивность свечения можно увеличить до необходимого уровня, повышая ток разряда.

Недостатком способа является то, что из-за высоких температур, возникающих при больших разрядных токах, происходит выделение загрязняющих газов со стенок и распыление материала встроенных электродов. Из-за этого спектральные характеристики излучения ламп ухудшаются, что требует их периодической замены. Поэтому изготовление долгоживущих ламп со встроенными электродами представляет собой технологически сложную задачу и, как следствие они относительно дороги и труднодоступны.

Более доступными являются безэлектродные лампы, представляющие собой стеклянные ячейки (сферической или цилиндрической формы) заполненные газом. При работе безэлектродные лампы обычно размещаются внутри катушки высокочастотного генератора, что вызывает свечение газа по всему объему лампы (Nagulin К. Y., Gil'mutdinov А. K., Badrutdinov О. R. Spatial distribution of radiation intensity in high-frequency electrodeless discharge lamps //Journal of Applied Spectroscopy. - 2000. - T. 67. - №. 1. - C. 14-21, Чернышов A.К. Калибратор длин волн для диапазона 0.6-1.4 мкм на основе стартеров люминесцентных ламп //Приборы и техника эксперимента. - 2018. -Т. 61. - №. 1. - С. 141-144). Очевидно, что от такого протяженного источника при прямом способе ввода в оптоволокно будет попадать лишь малая часть излучаемого света. Увеличить ввод оптического излучения в волокно можно при помощи линз или сферических зеркал. Однако такой подход заметно усложняет конструкцию узла стыковки и делает его стоимость выше, чем стоимость самого оптического источника (Thorlabs, Reflective Collimators //

https://www.thorlabs.com/newgrouppage9. cfm?objectgroup_id=4953).

Известен способ ввода излучения газового разряда в оптоволокно с использованием отражателя (US 5016152A, МПК G02B 6/0006, опубл. 21.09.1989), выбранный в качестве прототипа. Согласно способу, разрядная лампа помещается внутрь отражателя специальной формы. Излучение лампы фокусируется в торец оптоволокна, расположенного вблизи отражателя.

Недостатком этого способа является необходимость создания отражателя под конкретную геометрию лампы, что существенно усложняет способ и повышает стоимость его применения. Также к недостаткам способа с внешним отражателем можно отнести необходимость точной юстировки.

Задачей изобретения является упрощение конструкции ввода излучения тлеющего разряда в оптоволокно.

При использовании изобретения достигается следующий технический результат:

- простота и удобство использования способа ввода излучения в оптоволокно.

Технический результат достигается за счет того, что в газоразрядной лампе с помощью электрода, расположенного на внешней стороне стеклянного баллона лампы и металлизированного наконечника оптоволокна формируют небольшую область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна.

Способ характеризуется следующими чертежами:

На фиг. 1 представлена схема применения безлинзового способа ввода излучения тлеющего разряда в оптоволокно. Безэлектродная газоразрядная лампа 2 зажимается с помощью электрода 1. Оптоволокно 4 с надетым металлическим наконечником 3 примыкает к стенке лампы. Предлагаемый способ работает следующим образом. Электрод 1 подключается к «горячему» проводу высокочастотного генератора. Вплотную подведенное к плоскому торцу стеклянного баллона лампы 2 оптоволокно 4 с металлизированным наконечником 3 работает как «холодный» заземленный электрод. В результате в ячейке образуется переменное электрическое поле с силовыми линиями в виде конуса 6, и точно перед торцом оптоволокна формируется область интенсивного свечения газа 5.

На фиг. 2 в качестве иллюстрации эффективности способа представлен спектр излучения аргоновой лампы, записанный с помощью оптоволокна диаметром сердцевины 400 мкм при возбуждении лампы внутри катушки высокочастотного генератора.

На фиг. 3 представлен спектр аргоновой лампы при возбуждении газа с помощью предлагаемых внешних электродов.

Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно, заключающийся в использовании газоразрядной лампы и расположенного вблизи ее поверхности оптоволоконного кабеля, отличающийся тем, что с помощью электрода, расположенного на внешней стороне стеклянного баллона лампы, и металлизированного наконечника оптоволокна формируют область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна.
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Источник поступления информации: Роспатент

Showing 71-77 of 77 items.
15.07.2020
№220.018.3268

Способ получения композита пектиново-целлюлозной пленки на основе целлюлозы gluconacetobacter sucrofermentas и пектина

Изобретение относится к биотехнологии и может быть использовано в медицине, фармацевтической и пищевой промышленности. Предложен cпособ получения композита пектиново-целлюлозной пленки, заключающийся в культивировании целлюлозы Gluconacetobacter sucrofermentas в статических и динамических...
Тип: Изобретение
Номер охранного документа: 0002726359
Дата охранного документа: 13.07.2020
16.07.2020
№220.018.3300

Свариваемый термически не упрочняемый сплав на основе системы al-mg

Изобретение относится к области металлургии легких сплавов, предназначенных для изготовления деформированных полуфабрикатов в виде плит, листов, штамповок, профилей для использования в изделиях авиакосмической отрасли. Сплав на основе алюминия содержит, мас. %: магний 5,0-6,0, скандий...
Тип: Изобретение
Номер охранного документа: 0002726520
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.33c8

Устройство для подгонки толстопленочных резисторов

Устройство для подгонки толстопленочных резисторов относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для изготовления высокоточных и прецизионных пленочных резисторов. Устройство для подгонки толстопленочных резисторов содержит источник...
Тип: Изобретение
Номер охранного документа: 0002726849
Дата охранного документа: 16.07.2020
21.07.2020
№220.018.34fa

Длинная пустотелая широкохордая лопатка вентилятора авиационного трдд и способ ее изготовления

Группа изобретений относится к лопатке вентилятора авиационного ТРДД длиной 700÷1500 мм с демпфером для гашения вибраций. Предложена длинная пустотелая широкохордая лопатка вентилятора авиационного ТРДД, содержащая изготовленные из титанового сплава две половины лопатки, состоящие каждая из...
Тип: Изобретение
Номер охранного документа: 0002726955
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.35fd

Средство, проявляющее антиагрегационную активность

Изобретение относится к химии и медицине, а именно к фармацевтической химии и фармакологии, и может быть использовано для создания новых лекарственных средств профилактики тромбоза и тромбоэмболических осложнений. Сущность изобретения: применение L-пролина (L-пролиния ацетилсалицилата) или...
Тип: Изобретение
Номер охранного документа: 0002727508
Дата охранного документа: 22.07.2020
24.07.2020
№220.018.369f

Ротор вентилятора авиационного трдд с длинными широкохордными пустотелыми лопатками с демпферами

Предложен ротор вентилятора авиационного ТРДД, содержащий втулку с фланцами для крепления кока и барабана ротора подпорных ступеней, задний кок, закрепленный на втулке, передний кок, закрепленный на заднем коке, длинные саблевидные широкохордые пустотелые лопатки, закрепленные в пазах обода...
Тип: Изобретение
Номер охранного документа: 0002727314
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.39f7

Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах:...
Тип: Изобретение
Номер охранного документа: 0002728450
Дата охранного документа: 29.07.2020
Showing 1-2 of 2 items.
10.08.2015
№216.013.69d7

Электроразрядный кислородно-йодный лазер с буферным газом

Изобретение относится к лазерной технике. В электроразрядном кислородно-йодном лазере в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O(Δ) и перед сверхзвуковым соплом подмешивается газ X (CO, SF, SiF и т.д.), состоящий из молекул, тушащих возбужденный озон ,...
Тип: Изобретение
Номер охранного документа: 0002558648
Дата охранного документа: 10.08.2015
10.05.2018
№218.016.417a

Способ получения атомов йода

Изобретение относится к лазерной технике. Способ получения атомов йода для активной среды кислородно-йодного лазера включает последовательное прохождение через электроразрядный генератор и узел транспортировки газовой смеси, состоящей из инертного газа, йод содержащих молекул и атомов йода. В...
Тип: Изобретение
Номер охранного документа: 0002649025
Дата охранного документа: 29.03.2018
+ добавить свой РИД