×
19.10.2019
219.017.d82b

Результат интеллектуальной деятельности: Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно

Вид РИД

Изобретение

Аннотация: Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно используется в спектрометрии газов и плазмы электрических разрядов. С помощью электрода, расположенного на внешней стороне стеклянного баллона газоразрядной лампы, и металлизированного наконечника оптоволокна формируют электрическое поле особой формы и небольшую область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна, что позволяет осуществлять ввод излучения в оптоволокно без использования дополнительных оптических элементов. Технический результат – упрощение ввода излучения в оптоволокно. 3 ил.

Изобретение относится к области оптического приборостроения и может быть использовано в спектрометрии газов и плазмы электрических разрядов.

В спектрометрии газов и особенно плазмы электрических разрядов в качестве источников зондирующего оптического излучения наряду с лазерами используются газоразрядные лампы низкого давления. Для большей конструкционной гибкости и удобства эксплуатации в таких источниках доставку оптического излучения к объекту исследования выполняют с помощью оптоволокна (Kebabian P. L., Berkoff Т. A., Freedman A. Water vapour sensing using polarization selection of a Zeeman-split argon discharge lamp emission line //Measurement Science and Technology. - 1998. - T. 9. - №. 11. - C. 1793-1796). Поэтому в источниках излучения на основе газоразрядных ламп предусматриваются специальные узлы стыковки с оптоволокном. С точки зрения простоты изготовления и надежности работы самым оптимальным является прямой ввод, когда оптоволокно непосредственно примыкает к стеклянному баллону лампы. Подобный способ стыковки обеспечивает достаточный уровень ввода только при условии, что светящийся газ сконцентрирован в небольшом объеме, который расположен вблизи торца оптоволокна.

Известен способ ввода излучения газоразрядных ламп со встроенными электродами в оптоволокно, используемый в лампе для спектральной калибровки AvaLight-CAL (http://www.avantes.ru/pdf/AvaLight-CAL_Manual.pdf), в котором оптоволокно примыкает непосредственно к стеклянному баллону лампы. Свечение газа в них сконцентрировано в узком промежутке между электродами, а интенсивность свечения можно увеличить до необходимого уровня, повышая ток разряда.

Недостатком способа является то, что из-за высоких температур, возникающих при больших разрядных токах, происходит выделение загрязняющих газов со стенок и распыление материала встроенных электродов. Из-за этого спектральные характеристики излучения ламп ухудшаются, что требует их периодической замены. Поэтому изготовление долгоживущих ламп со встроенными электродами представляет собой технологически сложную задачу и, как следствие они относительно дороги и труднодоступны.

Более доступными являются безэлектродные лампы, представляющие собой стеклянные ячейки (сферической или цилиндрической формы) заполненные газом. При работе безэлектродные лампы обычно размещаются внутри катушки высокочастотного генератора, что вызывает свечение газа по всему объему лампы (Nagulin К. Y., Gil'mutdinov А. K., Badrutdinov О. R. Spatial distribution of radiation intensity in high-frequency electrodeless discharge lamps //Journal of Applied Spectroscopy. - 2000. - T. 67. - №. 1. - C. 14-21, Чернышов A.К. Калибратор длин волн для диапазона 0.6-1.4 мкм на основе стартеров люминесцентных ламп //Приборы и техника эксперимента. - 2018. -Т. 61. - №. 1. - С. 141-144). Очевидно, что от такого протяженного источника при прямом способе ввода в оптоволокно будет попадать лишь малая часть излучаемого света. Увеличить ввод оптического излучения в волокно можно при помощи линз или сферических зеркал. Однако такой подход заметно усложняет конструкцию узла стыковки и делает его стоимость выше, чем стоимость самого оптического источника (Thorlabs, Reflective Collimators //

https://www.thorlabs.com/newgrouppage9. cfm?objectgroup_id=4953).

Известен способ ввода излучения газового разряда в оптоволокно с использованием отражателя (US 5016152A, МПК G02B 6/0006, опубл. 21.09.1989), выбранный в качестве прототипа. Согласно способу, разрядная лампа помещается внутрь отражателя специальной формы. Излучение лампы фокусируется в торец оптоволокна, расположенного вблизи отражателя.

Недостатком этого способа является необходимость создания отражателя под конкретную геометрию лампы, что существенно усложняет способ и повышает стоимость его применения. Также к недостаткам способа с внешним отражателем можно отнести необходимость точной юстировки.

Задачей изобретения является упрощение конструкции ввода излучения тлеющего разряда в оптоволокно.

При использовании изобретения достигается следующий технический результат:

- простота и удобство использования способа ввода излучения в оптоволокно.

Технический результат достигается за счет того, что в газоразрядной лампе с помощью электрода, расположенного на внешней стороне стеклянного баллона лампы и металлизированного наконечника оптоволокна формируют небольшую область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна.

Способ характеризуется следующими чертежами:

На фиг. 1 представлена схема применения безлинзового способа ввода излучения тлеющего разряда в оптоволокно. Безэлектродная газоразрядная лампа 2 зажимается с помощью электрода 1. Оптоволокно 4 с надетым металлическим наконечником 3 примыкает к стенке лампы. Предлагаемый способ работает следующим образом. Электрод 1 подключается к «горячему» проводу высокочастотного генератора. Вплотную подведенное к плоскому торцу стеклянного баллона лампы 2 оптоволокно 4 с металлизированным наконечником 3 работает как «холодный» заземленный электрод. В результате в ячейке образуется переменное электрическое поле с силовыми линиями в виде конуса 6, и точно перед торцом оптоволокна формируется область интенсивного свечения газа 5.

На фиг. 2 в качестве иллюстрации эффективности способа представлен спектр излучения аргоновой лампы, записанный с помощью оптоволокна диаметром сердцевины 400 мкм при возбуждении лампы внутри катушки высокочастотного генератора.

На фиг. 3 представлен спектр аргоновой лампы при возбуждении газа с помощью предлагаемых внешних электродов.

Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно, заключающийся в использовании газоразрядной лампы и расположенного вблизи ее поверхности оптоволоконного кабеля, отличающийся тем, что с помощью электрода, расположенного на внешней стороне стеклянного баллона лампы, и металлизированного наконечника оптоволокна формируют область интенсивного свечения газа, которая автоматически располагается вблизи торца оптоволокна.
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Безлинзовый способ ввода излучения тлеющего разряда в оптоволокно
Источник поступления информации: Роспатент

Showing 61-70 of 77 items.
30.10.2019
№219.017.dbc0

Способ увеличения антибактериальной активности антибиотиков

Изобретение относится к медицине, в частности к способу увеличения антибактериальной активности бензилпенициллина натриевой соли без изменения токсичности. Заявленный способ заключается в воздействии импульсного магнитного поля высокой напряженности на порошкообразный антибиотик переменным...
Тип: Изобретение
Номер охранного документа: 0002704317
Дата охранного документа: 28.10.2019
16.01.2020
№220.017.f5cd

Способ активного изменения траектории движения металлических тел, перемещающихся с высокой скоростью

Изобретение относится к области защиты военных и гражданских объектов. На предполагаемом пути движения тела (5) устанавливают датчик движения (1), взаимосвязанный с блоком синхронизации (2). Также устанавливают индуктор (4), подключенный к магнитно-импульсной установке (МИУ) (3), за датчиком...
Тип: Изобретение
Номер охранного документа: 0002710963
Дата охранного документа: 14.01.2020
25.01.2020
№220.017.f9ef

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в импульсных режимах работы

Изобретение относится к испытательным стендам для жидкостных ракетных двигателей малой тяги (ЖРДМТ). Тягоизмерительное устройство состоит из корпуса, выполненного в виде круговой балки, упругих элементов, представляющих собой радиально ориентированные лепестки прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002711813
Дата охранного документа: 23.01.2020
06.02.2020
№220.017.ff7c

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb -...
Тип: Изобретение
Номер охранного документа: 0002713255
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.fff4

Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации

Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации. Предложены способ и устройство для измерения массы газов (водорода Н и кислорода O) при огневых испытаниях ракетных двигателей малых тяг при...
Тип: Изобретение
Номер охранного документа: 0002713308
Дата охранного документа: 04.02.2020
15.02.2020
№220.018.02da

Композиция для изготовления жаростойких поризованных композитов

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Композиция для изготовления жаростойких поризованных композитов включает, мас.%: ортофосфорную кислоту HPO 10-15, отработанный катализатор ИМ-2201...
Тип: Изобретение
Номер охранного документа: 0002714175
Дата охранного документа: 12.02.2020
17.02.2020
№220.018.0332

Бамперное защитное устройство для легковых автомобилей

Изобретение относится к области автомобилестроения, к устройствам, повышающим пассивную безопасность автомобилей. Бамперное защитное устройство для легковых автомобилей, у которого в качестве бампер-балки используется передняя балка силовой рамы автомобиля, если бамперное защитное устройство...
Тип: Изобретение
Номер охранного документа: 0002714341
Дата охранного документа: 14.02.2020
17.02.2020
№220.018.0376

Пенальное защитное устройство для повышения безопасности водителя и пассажиров при аварии автомобиля

Изобретение относится к области защитных устройств, повышающих пассивную безопасность автомобиля. Пенальное защитное устройство для повышения безопасности водителя и пассажиров при аварии автомобиля содержит корпус-балку и два многослойных, многопролетных гофрированных пакета, набранных "гофр в...
Тип: Изобретение
Номер охранного документа: 0002714340
Дата охранного документа: 14.02.2020
21.06.2020
№220.018.288b

Устройство для определения нагрузочной способности микросхем

Устройство для определения нагрузочной способности микросхем относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров микросхем при их производстве. Устройство для определения нагрузочной способности микросхем содержит...
Тип: Изобретение
Номер охранного документа: 0002723968
Дата охранного документа: 18.06.2020
24.06.2020
№220.018.29f1

Ракетный двигатель малой тяги на несамовоспламеняющихся жидком горючем и газообразном окислителе

Изобретение относится к области ракетно-космической техники, а именно к ракетным двигателям малой тяги на несамовоспламеняющихся газообразном окислителе и жидком горючем. Ракетный двигатель содержит агрегат зажигания и свечу, электропневмоклапаны окислителя «О» и горючего «Г», смесительную...
Тип: Изобретение
Номер охранного документа: 0002724069
Дата охранного документа: 19.06.2020
Showing 1-2 of 2 items.
10.08.2015
№216.013.69d7

Электроразрядный кислородно-йодный лазер с буферным газом

Изобретение относится к лазерной технике. В электроразрядном кислородно-йодном лазере в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O(Δ) и перед сверхзвуковым соплом подмешивается газ X (CO, SF, SiF и т.д.), состоящий из молекул, тушащих возбужденный озон ,...
Тип: Изобретение
Номер охранного документа: 0002558648
Дата охранного документа: 10.08.2015
10.05.2018
№218.016.417a

Способ получения атомов йода

Изобретение относится к лазерной технике. Способ получения атомов йода для активной среды кислородно-йодного лазера включает последовательное прохождение через электроразрядный генератор и узел транспортировки газовой смеси, состоящей из инертного газа, йод содержащих молекул и атомов йода. В...
Тип: Изобретение
Номер охранного документа: 0002649025
Дата охранного документа: 29.03.2018
+ добавить свой РИД