×
18.10.2019
219.017.d815

РАДИАЦИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНОЙ ВЫГОРОДКИ ВВЭР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002703318
Дата охранного документа
16.10.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов (ВВЭР) с ресурсом не менее 60-ти лет. Радиационно-стойкая аустенитная сталь содержит углерод, кремний, марганец, хром, никель, титан, молибден, кальций, лантан, церий и железо при следующем соотношении элементов, мас.%: C 0,06÷0,10, Si 0,40÷0,60, Mn 1,50÷2,00, Cr 15,0÷16,0, Ni 24,00÷26,00, Mo 0,70÷1,40, Ti (5*C+0,10)÷0,80, Ca 0,001÷0,003, La+Ce 0,001÷0,005, P ≤0,035, S ≤0,008, N ≤0,020, Co ≤0,025, Cu ≤0,3, Sn ≤0,001, Sb ≤0,001, As ≤0,001, Bi ≤0,001, Pb ≤0,001, железо - остальное. Повышается стойкость к распуханию при воздействии нейтронных потоков при дозах до 150 смещений на атом (сна) при сохранении требуемых механических свойств. 1 з.п. ф-лы, 3 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, отвечающего требованиям безопасной эксплуатации атомной энергетики, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов (ВВЭР) с ресурсом не менее 60-ти лет.

Известны коррозионно-стойкие стали типа 08Х18Н10Т и 08X18Н9, применяемые для изготовления внутрикорпусной выгородки в России [1-3] и за рубежом [4] соответственно.

Выгородка корпуса реактора ВВЭР подвергается высокодозному нейтронному облучению и эксплуатируется в водной среде теплоносителя первого контура, являющейся коррозионной средой [5]. Высокодозное облучение вызывает дополнительный разогрев внутренних слоев выгородки и, как следствие, их радиационное распухание. Градиенты температуры и распухания по толщине выгородки приводят к возникновению высоких растягивающих напряжений в поверхностных слоях выгородки, контактирующих с водной средой. Контакт высокооблученного металла со средой может приводить к коррозионному растрескиванию выгородки. Кроме того, радиационное распухание стали 08Х18Н10Т, превышающее 7%, приводит к γ→α-превращению и возникновению хрупко-вязкого перехода, что обусловливает резкое падение пластичности, т.е. охрупчивание стали.

При распухании, превышающем 5%, трещиностойкость стали становится близка к нулю.

Основным негативным фактором радиационного распухания является вызываемое им формоизменение выгородки, которое может привести к контакту внутренней поверхности выгородки с периферийными тепловыделяющими сборками (ТВС) и, как следствие, к затруднению извлечения ТВС из активной зоны.

Согласно оценкам, представленным в работах [6, 7], в случае изготовления выгородки реактора ВВЭР ТОИ из используемой в настоящее время стали 08Х18Н10Т, при консервативной оценке ее радиационного распухания проектный срок службы выгородки 60 лет может быть не обеспечен. При этом будут реализованы вышеперечисленные механизмы охрупчивания, а формоизменение выгородки приведет к ее контакту с ТВС. Выполненные материаловедческие исследования [6] показывают, что для гарантированного обеспечения работоспособности выгородки реактора типа ВВЭР ТОИ в течение проектного срока службы 60 лет необходимо снизить распухание материала выгородки в 2,4 раза по сравнению со сталью 08Х18Н10Т.

Распухание стали типа 08X18Н9, при одних и тех же условиях, выше, чем у стали 08Х18Н10Т [8], поэтому выгородка из стали 08X18Н9 будет иметь еще меньший ресурс, чем выгородка из стали 08Х18Н10Т.

Наиболее близкой по назначению, условиям эксплуатации и механическим характеристикам к предлагаемой стали является сталь марки 08Х18Н10Т-У по ГОСТ 5632-72 [1], применяемая в настоящее время для изготовления внутрикорпусной выгородки ВВЭР и содержащая компоненты в масс. %:

углерод ≤0,08
кремний ≤0,8
марганец ≤2,00
хром 17,00-19,00
никель 9,00-11,00
титан 5*С - 0,70
сера ≤0,02
фосфор ≤0,035
кобальт ≤0,025
медь ≤0,3
железо остальное.

Данная марка характеризуется недостаточным сопротивлением радиационному распуханию по критерию формоизменения и охрупчивания при повреждающих дозах, характерных для внутрикорпусной выгородки ВВЭР поколения III+.

Задачей, на решение которой направлено предлагаемое изобретение, является создание стали, позволяющей повысить срок службы внутрикорпусных деталей (выгородок) ВВЭР ТОИ до 60 лет.

Техническим результатом настоящего изобретения является создание аустенитной хромоникелевой стали, обладающей повышенной стойкостью к распуханию при воздействии нейтронных потоков при дозах до 150 сна (смещений на атом), что обеспечивает снижение формоизменения внутрикорпусной выгородки при эксплуатации, а также более высокие характеристики пластичности и трещиностойкости в облученном нейтронами состоянии при сохранении сопротивления коррозионному растрескиванию (по сравнению со сталью 08Х18Н10Т).

Такой комплекс свойств новой стали обеспечивает работоспособность внутрикорпусной выгородки ВВЭР ТОИ в течение проектного срока службы, составляющего не менее 60 лет.

Технический результат достигается за счет того, что в состав известной стали, содержащей углерод, кремний, марганец, хром, никель, титан и железо, дополнительно введен молибден, кальций и редкоземельные металлы (РЗМ) лантан и церий при следующем соотношении элементов, масс. %:

углерод 0,06-0,10
кремний 0,40-0,60
марганец 1,50-2,00
хром 15,0-16,0
никель 24,00-26,00
молибден 0,70-1,40
титан (5*содержание углерода +0,10) - 0,80
кальций 0,001-0,003
лантан и церий 0,001-0,005
фосфор ≤0,035
сера ≤0,008
азот ≤0,020
кобальт ≤0,025
медь ≤0,3
олово ≤0,001
сурьма ≤0,001
мышьяк ≤0,001
висмут ≤0,001
свинец ≤0,001
железо остальное.

При этом для наиболее полного достижения технического результата должны одновременно выполняться следующие соотношения. Хромовый эквивалент, рассчитываемый по формуле:

CCrэкв = CCr + СМо + 1,5*CSi + 0,5*CTi,

не должен превышать величину

где CCr - содержание хрома, масс. %; СМо - содержание молибдена, масс. %; Csi - содержание кремния, масс. %; CTi - содержание титана, масс. %.

Никелевый эквивалент, рассчитываемый по формуле:

СNiэкв = CNi + 30*СС + 0,5*СMn + 30*CN,

должен быть не ниже величины

где CNi - содержание никеля, масс. %; СC - содержание углерода, масс. %; СMn - содержание марганца, масс. %; CN - содержание азота, масс. %.

Ширина выбранных диапазонов содержания легирующих элементов обусловлена металлургическими особенностями литья крупных слитков.

Заявляемое изобретение проиллюстрировано следующими графическими материалами.

На фиг. 1 представлены зависимости радиационного распухания от повреждающей дозы для прототипа (металл поковки №1) и заявляемой стали с 20% никеля (металл поковки №2).

На фиг. 2 представлены зависимости радиационного распухания от повреждающей дозы для прототипа (металл поковки №1) и металла поковок №3 и №4.

На фиг. 3 показано сопоставление диаграмм деформирования металла поковки №3 (без РЗМ и кальция) и поковки №4 (с РЗМ и кальцием) при температурах ковки.

Таблица 1 содержит данные по химическому составу материалов поковки №2 заявляемой марки стали и поковки №1 прототипа.

Таблица 2 содержит данные по химическому составу материалов поковок №3 и №4 заявляемой марки стали.

Таблица 3 отражает данные по механическим свойствам заявляемой марки стали и прототипа после аустенизации при температуре 1050°С с охлаждением в воде.

Выполнение этих соотношений обеспечивает сохранение аустенитной структуры в течение всего срока эксплуатации внутрикорпусной выгородки (отсутствие γ→α превращения), сохранение стойкости к межкристаллитному коррозионному растрескиванию и максимальный уровень распухания материала выгородки не более 6 % на конец срока эксплуатации реактора.

Соотношение указанных элементов, в том числе легирующих, и принятые ограничения суммарного содержания некоторых из них выбраны таким образом, чтобы сталь обеспечивала требуемый уровень механических характеристик и радиационного распухания (не более 6%) после облучения дозой до 150 сна при максимальной температуре облучения Тобл = 370°С.

Предлагаемая сталь, как и прототип, легирована углеродом и титаном. В предлагаемой стали регламентирован нижний предел содержания углерода (0,06%) и увеличен верхний предел содержания углерода до 0,1%. Легирование титаном производится с расчетом, чтобы обеспечить такое гарантированное содержание карбидов титана в матрице, которое оказывает влияние на радиационное распухание в сторону его уменьшения. На поверхности раздела карбид-матрица в силу их когерентности и значительного положительного объемного несоответствия параметров кристаллической решетки (+0,7 [9]) образуются упругоискаженные области, которые служат стоками для вакансий. Кроме того, карбиды TiC задерживают гелиевые пузырьки и затрудняют их преобразование в поры. Как показано в работе [10], введение в сталь Х16Н15М3 всего ~0,1% титана снижает распухание с 15 до 2% после повреждающей дозы 70 сна (Тобл = 500°С). Содержание углерода в количестве С=(0,06-0,10)% в предлагаемой стали в комплексе с легированием титаном в количестве ((5С+0,1)-0,8)% обеспечивает предотвращение образования карбидов Cr23C6 по границам зерен, приводящих к обеднению хромом приграничных участков и увеличению склонности стали к межкристаллитному коррозионному растрескиванию. Оставшиеся в твердом растворе титан и углерод вносят заметный вклад в подавление распухания как за счет положительного влияния радиационно-индуцированных карбидов TiC, так и за счет влияния отдельных атомов титана в твердом растворе. Атомный радиус титана составляет RTi = 0,145 нм (надразмерный элемент), что обусловливает образование комплекса атом титана-вакансия железа (с энергией связи 0,3 эВ [11]) и, тем самым, образует дополнительные центры рекомбинации для межузельных атомов.

При содержании титана, превышающем 0,8-1,0%, в стали под облучением образуются высокая концентрация дисперсных частиц Ni3Ti (γ'-фаза). Выделение γ'-фазы оказывает двоякое воздействие на радиационное распухание. Собственно мелкодисперсная γ'-фаза подавляет распухание по механизму, подобному влиянию карбидов TiC [10]. С другой стороны, γ'-фаза выводит из твердого раствора заметное количество никеля, что может стимулировать γ→α превращение и рост распухания.

Фазовое превращение γ→α в процессе облучения аустенитных сталей происходит из-за значительного обеднения матрицы аустенитобразующими элементами, прежде всего, никелем. При этом обеднение аустенитной матрицы никелем сопровождается усилением распухания. Положительное влияние повышенных концентраций никеля на подавление распухания отмечалось как для простых тройных сплавов системы Fe-Cr-Ni, так и для сложнолегированных промышленных составов, причем минимум распухания отмечается при содержании никеля в интервале 35-45%. Количественная оценка степени обеднения аустенитной матрицы никелем показала, что при величине распухания, равной 8%, обеднение никелем матрицы составляет около 6% [12].

Основным элементом, дающим сталям высокую коррозионную стойкость, является хром. Роль хрома заключаются в том, что он обеспечивает способность стали к пассивации. Защитная пассивирующая пленка образуется только при содержании хрома в стали более 12,5%. В целях гарантированного обеспечения однофазной аустенитной микроструктуры стали с учетом обеднения матрицы никелем под облучением содержание хрома в заявляемой марке задается в диапазоне (15-16)%.

Оценка степени предрасположенности различных сталей к фазовому γ→α-превращению, выполненная с применением диаграммы Шеффлера, показала, что для гарантированного отсутствия γ→α превращения в аустенитных сталях, содержащих (16-19)% эквивалента хрома CCrэкв, с учетом обеднения матрицы стали никелем в процессе облучения в течение 60 лет, содержание никеля в стали должно быть увеличено по сравнению с прототипом с (9,00-11,00)% как минимум до 20%. Такое увеличение никеля будет компенсировать обеднение матрицы материала никелем за счет радиационного распухания, образования радиационно-индуцированных фаз и сегрегаций, и гарантировано обеспечит полностью аустенитную структуру при распухании до 8%. Увеличение содержания никеля по сравнению с прототипом также способствует снижению радиационного распухания при нейтронном облучении [12]. В то же время, 20% содержания никеля может быть недостаточно для необходимого снижения радиационного распухания по сравнению с прототипом. Учитывая некоторые результаты исследований [13], показывающих отсутствие снижения распухания при повышении никеля до 20% при содержании хрома 16%, при выборе химического состава рассматривалось два варианта содержания никеля: 20% и 25%.

Кроме того, увеличение никеля до 25% гарантирует отсутствие γ→α превращения даже при возможном обогащении матрицы хромом, эквивалентном обеднению никелем.

Молибден является элементом, снижающим диффузионную подвижность различных элементов и повышающим сопротивление ползучести. Кроме того, легирование молибденом способствует уменьшению степени сегрегационных процессов легирующих и примесных элементов в матрице при эксплуатации, а также повышению температуры рекристаллизации, что важно для формирования требуемого балла зерна в заготовке при ковке. Снижение диффузионной подвижности элементов способствует, в том числе, снижению распухания, а повышение сопротивления ползучести обеспечивает более высокое сопротивление коррозионному растрескиванию.

В то же время одновременное легирование титаном и молибденом приводит к образованию в стали крупных карбидов типа (Ti, Мо)С, которые могут приводить к снижению трещиностойкости и ударной вязкости. Согласно выполненным в работе [14] исследованиям формирование крупных карбидов (Ti, Мо)С происходит даже при снижении содержания молибдена до 1,5%. В связи с этим в новой стали установлено содержание Мо в диапазоне (0,7 -1,4)%.

В заявленной марке стали в качестве одного из раскислителей применяют кремний. Кремний имеет диффузионную подвижность на несколько порядков выше по сравнению с никелем и другими основными легирующими элементами аустенитной стали. Ускорение диффузии в сталях, легированных кремнием, снижает пресыщение вакансиями и тем самым уменьшает скорость зарождения пор. Другой механизм влияния кремния как подразмерного элемента аналогичен никелю - кремний образует стабильные комплексы с межузельными атомами и тем самым увеличивает степень их рекомбинации с вакансиями. Однако в процессе образования γ'-фазы Ni3Si происходит удаление кремния из твердого раствора, причем совместно с никелем, наиболее эффективно подавляющим распухание и стабилизирующим γ-фазу. В прототипе 08Х18Н10Т содержание кремния ограничено сверху уровнем 0,8%. Учитывая как положительное, так и отрицательное влияние кремния, в заявленной марке содержание кремния ограничено уровнем (0,4-0,6)%.

Марганец применяют для удаления из стали кислорода и серы. Он имеет меньшую тенденцию к сегрегации, чем любой другой легирующий элемент. Марганец благоприятно влияет на качество поковки во всем диапазоне содержания углерода, за исключением сталей с очень низким содержанием углерода, а также снижает риск красноломкости. Марганец благоприятно влияет на ковкость и свариваемость сталей. Марганец способствует образованию аустенита и поэтому расширяет аустенитную область диаграммы состояния. Большое содержание марганца (более 2%) приводит к возрастанию тенденции к растрескиванию и короблению при закалке. В заявляемой марке стали содержание марганца ограничено уровнем (1,5-2,0)%.

Содержание азота в заявляемой стали нормировано как примесь, так как азот приводит к образованию нитридов и карбонитридов титана, на которых образуются деформационные поры [15]. Кроме того, азот снижает энергию дефектов упаковки (ЭДУ), что отрицательно сказывается на сопротивлении стали коррозионному растрескиванию. Исходя из вышеизложенного, а также учитывая современные возможности металлургического производства, содержание азота не должно превышать 0,02 %, т.е. CN≤0,02%.

Заявляемая сталь легирована кальцием в количестве 0,001-0,003%, который процессе затвердевания адсорбируется на поверхности растущих кристаллов, понижая скорость роста граней кристаллов металла и тем самым, способствует формированию более дисперсной структуры. Кальций связывает серу в тугоплавкие соединения, резко снижая возможность образования легкоплавких сульфидов TiS и NiS при сверхравновесном содержании серы.

Введение в металл добавок редкоземельных металлов (РЗМ) церия и лантана в суммарном количестве 0,001-0,005%, приводит к измельчению зерна; очищает стали от кислорода, серы и нейтрализует вредное влияния примесей цветных металлов; улучшает свариваемость стали с точки зрения повышения сопротивления образованию «горячих трещин» в результате связывания серы и кислорода в тугоплавкие соединения [16]. Редкоземельные металлы снижают сопротивление деформированию при ковке увеличивая технологичность стали при изготовлении крупногабаритных поковок. Кроме того, эти металлы снижают радиационное распухание [9].

Фосфор имеет высокую диффузионную подвижность и усиливает скорость диффузии основных элементов стали. Выделения фосфидов Fe2P усиливают рекомбинацию точечных радиационно-индуцированных дефектов на поверхности раздела выделение-матрица из-за высокого несоответствия [9, 17]. Поэтому в заявленной марке стали фосфор не следует рассматривать как примесь. Оптимальное содержание фосфора с точки зрения снижения распухания составляет от 0,020% до 0,035% [12,17].

В то же время следует отметить, что фосфор может образовывать межзеренные сегрегации и снижать коррозионную стойкость стали [18].

Учитывая, что в современной металлургии без введения специальных требований по чистоте аустенитных хромо-никелевых сталей по содержанию фосфора используется шихта, при которой содержание фосфора варьируется от 0,01% до 0,035%, содержание фосфора может быть ограничено 0,035% как и в прототипе.

Содержание серы в заявленной марке ограничивается 0,008%, что в сочетании с микролегированием кальцием обеспечивает практически полное отсутствие формирования легкоплавких эвтектик при затвердевании слитка и, как следствие, обеспечивает его технологическую прочность. Кроме того, низкое содержание серы обеспечивает низкую объемную долю сульфидов и, как следствие, высокий уровень трещиностойкости и ударной вязкости [19].

Содержание меди как примеси, как и в стали прототипе, ограничено 0,3% согласно ГОСТ 5632-72 [1] для сталей, не легированных медью.

Элементы олово, сурьма, мышьяк, висмут и свинец относятся к примесям и их содержание в предлагаемой стали не должно превышать 0,001%. Содержание примесей сверх указанного уровня отрицательно влияет на служебные характеристики стали - примеси при воздействии рабочей температуры и облучения, усиливающих диффузию, сегрегируют на границы зерен и ослабляют их когезивную прочность.

Кобальт образует при облучении долгоживущие изотопы, поэтому его содержание в стали также ограничено минимальным уровнем, который можно обеспечить в стали предлагаемого состава при выплавке - не более 0,025%.

На первом этапе из принципа экономного легирования стали никелем в результате экспериментальных исследований был выбран состав заявляемой стали с содержанием легирующих и примесных элементов в пределах патентуемого состава за исключением никеля, содержание которого составило 20%, и без введения РЗМ и кальция. Были изготовлены 2 опытные поковки весом по 500 кг - поковка №1 прототипа (сталь марки 08Х18Н10Т) и поковка №2 заявляемой стали.

Металл выплавлялся в вакуумных индукционных печах. Разливка в слитки производилась в вакууме. Полученный металл подвергался горячей обработке давлением на промышленном кузнечно-прессовом оборудовании.

Химический состав материалов представлен в таблице 1. Для сравнительной оценки склонности к радиационному распуханию при больших дозах облучения заявляемой стали с 20% никеля и прототипа было проведено облучение тяжелыми ионами в ионном ускорителе. Облучение проводилось при различных температурах и различном уровне прединжектированного гелия, имитирующего его генерацию в материале в результате ядерных реакций при облучении нейтронами.

После облучения проводилось исследование микроструктуры и радиационного распухания облученного слоя образцов методами сканирующей и просвечивающей электронной микроскопии.

Как видно из фиг. 1, металл поковки заявляемой стали с 20% никеля имеет распухание в 1,3 раза ниже, чем у прототипа.

Таким образом, заявляемая сталь с содержанием никеля 20% не обеспечивает требуемое снижение радиационного распухания по сравнению с прототипом в 2,4 раза, а, следовательно, указанный материал не обеспечивает гарантированную работоспособность выгородки ВВЭР ТОИ в течение проектного срока эксплуатации 60 лет.

Исходя из полученного результата дополнительно были изготовлены 2 опытных поковки №3 и №4 заявляемой стали по 500 кг каждая. Содержание легирующих и примесных элементов в металле поковки №3 соответствовало патентуемому составу без введения РЗМ и кальция, а в поковке №4 -полностью соответствовало патентуемому составу.

Химический состав поковок №3 и №4 представлен в таблице 2.

Облучение в ионном ускорителе металла поковок №3 и №4 проводилось по режиму, моделирующему облучение материала ВКУ в реакторах типа ВВЭР. По этому же режиму был облучен металл прототипа (поковка №1).

На фиг. 2 видно, что распухание металла поковки №3 в 2,4 раза ниже, чем у прототипа, а распухание металла поковки №4 в 2,7 раза ниже, чем у прототипа.

Полученные данные показывают явное преимущество заявляемой стали с 25% никеля по сравнению со сталью с 20% никеля (металл поковки №2). Кроме того, видно, что введение редкоземельных металлов и кальция подавляет в некоторой степени радиационное распухание.

Кроме указанного положительного влияния РЗМ и кальция на подавление распухания было подтверждено положительное влияние этих элементов на технологичность стали при ковке.

На фиг. 3 показано сопоставление диаграмм деформирования металла поковки №3 (без РЗМ и кальция) и поковки №4 (с РЗМ и кальцием) при температурах ковки, и видно, что сопротивление стали с РЗМ и кальцием ниже.

Исследования механических свойств металла поковки прототипа №1 и поковки №4 заявляемой стали проводилось на образцах, изготовленных из термически обработанного после ковки металла: гомогенизационный отжиг (аустенизация) при 1050°С с охлаждением в воде. Выдержка при температуре аустенитизации назначалась из расчетиа 2 мин/мм сечения. Из термически обработанного материала были изготовлены заготовки, а затем образцы на статическое растяжение при температурах +20°С и 350°С.

Результаты определения механических свойств представлены в таблице 3. В этой же таблице приведены требования к величине механических свойств для стали прототипа 08Х18Н10Т согласно ОСТ 108.109.01-92, которые используются при расчете статической прочности элементов внутрикорпусных устройств реакторов и, в частности, выгородки. Результаты механических испытаний усреднены по 2-м образцам на точку.

Из представленных в таблице 3 данных видно, что металл обеих поковок обеспечивает требования ОСТ 108.109.01-92, предъявляемые к механическим свойствам стали прототипа, а значит, обеспечивают прочностные характеристики выгородки реактора типа ВВЭР ТОИ.

Исходя из того, что механические свойства заявляемой стали с 25% никеля, добавлением РЗМ и кальция, обеспечивают требования ОСТ 108.109.01-92, предъявляемые к механическим свойствам стали прототипа (Таблица 3), а радиационное распухание в 2,7 раза ниже, чему у прототипа (фиг. 2), предлагается использовать указанную сталь для ВКУ перспективных ВВЭР.

Кроме того, следует отметить, что легирование стали РЗМ улучшает ее технологичность (фиг. 3).

Учитывая варьирование основных легирующих элементов, влияющих на ее структурное состояние, в пределах патентуемого состава, а также учитывая процессы, приводящие к обеднению никелем и обогащении хромом матрицы при облучении, для обеспечения аустенитной структуры в течение всего срока эксплуатации для заявляемого состава должны выполняться следующие соотношения: хромовый эквивалент, рассчитываемый по формуле

CCrэкв = CCrMo+1,5*CSi+0,5*CTi, должен не превышать величину никелевый эквивалент, рассчитываемый по формуле: CNiэкв = СNi+30*СC+0,5*СMn+30*CN, должен быть не ниже величины

Результаты проведенных испытаний свидетельствуют о том, что разработанная аустенитная хромоникелевая сталь с содержанием никеля 25% позволяет достичь указанный в описании технический результат (повышенную стойкостью к распуханию при сохранении требуемых механических свойств), а в отношении сплава-прототипа подтверждены его недостатки.

Источники информации:

1. ГОСТ 5632-2014 «Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные», М., 2015, 54 с.

2. ОСТ 108.109.01-92 «Заготовки корпусных деталей из коррозионностойких сталей аустенитного класса. Технические условия».

3. Патент РФ № 2293787 от 20.02.2007, Бюллетень №5.

4. Стандарт ASTM А-182.

5. Погодин В.П., Богоявленский В.Л., Сентюрев В.П. Межкристаллитная коррозия и коррозионное растрескивание нержавеющих сталей в водных средах - М., «Атомиздат», 1970, с. 422.

6. Карзов Г.П., Марголин Б.З. Основные механизмы радиационного повреждения материалов ВКУ и материаловедческие проблемы их длительной эксплуатации. Журнал «РЭА», 2015, №2, с. 8-15.

7. Пиминов В.А., Евдокименко В.В. Оценка прочности и ресурса ВКУ действующих и сооружаемых реакторов типа ВВЭР: реалистический и консервативный прогнозы. Журнал «РЭА», 2015, №2, с. 16-19.

8. Васина Н.К, Марголин Б.З., Гуленко А.Г, Курсевич И.П. Радиационное распухание нержавеющих сталей: влияние различных факторов. Обработка экспериментальных данных и формулировка определяющих уравнений. Журнал «Вопросы материаловедения», 2006, №4(48), с. 69-89.

9. Воеводин В.Н., Неклюдов И.М. Эволюция структурно-фазового состояния и радиационная стойкость конструкционных материалов. Киев, «Наукова думка», 2006, с. 376.

10. Налесник В.М., Сагарадзе В.В. и др. Исследование процессов, определяющих формоизменение аустенитных нержавеющих сталей типа 16-15 с различными вариантами легирования в условиях облучения БН-600. «Вопросы атомной науки и техники». Серия: Физика радиационных повреждений и радиационное материаловедение, 1991, вып. 2(56).

11. Johnston Р.А., Lam N.Q. Solute segregation under irradiation// Journal of Nuclear Materials, 1973, 69-70, p. 424.

12. Курсевич И.П., Карзов Г. П., Марголин Б.З. и др. Принципы легирования новой радиационностойкой аустенитной стали для ВКУ ВВЭР-1200, обеспечивающей их безопасную эксплуатацию не менее 60 лет. Журнал «Вопросы материаловедения», 2012, №3(71), с. 140-154.

13. Garner F.A., Black С.А., Edwards D.J., Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys // J. Nucl. Mater., 1997,V. 245, 124-130 pp.

14. B. Rouxel, C. Bisor, Y. De Carlan et al. Influence of austenitic stainless steel microstructure on the void swelling under ion irradiation // EPJ Nuclear Sci. Technol., 2016, V. 2.

15. Сорокин A.A., Марголин Б.З., Курсевич И.П., Минкин А.И., Неустроев B.C., Белозеров С.В. Влияние нейтронного облучения на механические свойства материалов внутрикорпусных устройств реакторов типа ВВЭР. «Вопросы материаловедения», 2011, №2 (66), с. 131-152.

16. Технология электрической дуговой сварки. Под ред. Деменцевича В.П., Думова С.И. М., «Машиностроение», 1959, с. 358.

17. Maziasz P. J. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels // Journal of Nuclear Materials. - 1993. - V. 205. - P. 118-145.

18. Металловедение и термическая обработка стали. Справочник. Под ред. Бернштейна М.Л., Рахштадта А.Г. М., «Металлургия», 1983, т. II, с. 365.

19. Херцберг Р. В. Деформация и механика разрушения конструкционных материалов. Пер. с англ. Бернштейна А.М., под ред. Бернштейна М.Л., Ефименко С.П. М., «Металлургия», 1989, с. 575, ил. 21.


РАДИАЦИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНОЙ ВЫГОРОДКИ ВВЭР
РАДИАЦИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНОЙ ВЫГОРОДКИ ВВЭР
РАДИАЦИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНОЙ ВЫГОРОДКИ ВВЭР
РАДИАЦИОННО-СТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНОЙ ВЫГОРОДКИ ВВЭР
Источник поступления информации: Роспатент

Showing 1-10 of 71 items.
25.08.2017
№217.015.b290

Рельсовый путь для наклонного подъемника ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в составе перегрузочного оборудования ядерного реактора. Заявленный рельсовый путь наклонного подъемника ядерного реактора выполнен с чередованием прямолинейных и криволинейных участков, причем начальный и конечный...
Тип: Изобретение
Номер охранного документа: 0002614056
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b740

Наклонный подъемник ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в составе перегрузочного оборудования ядерного реактора. Наклонный подъемник ядерного реактора содержит тележку 1 с гильзой 2 для ОТВС, которая перемещается по рельсовому пути 3 в наклонном коридоре 4 с помощью троса 8....
Тип: Изобретение
Номер охранного документа: 0002614518
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.d5cb

Способ перегрузки тепловыделяющей сборки и устройство для его осуществления

Изобретение относится к области обращения с ядерным топливом, в частности технологии загрузки и выгрузки тепловыделяющей сборки (ТВС) разгрузочно-загрузочной машиной (РЗМ). Способ перегрузки тепловыделяющей сборки включает выгрузку тепловыделяющей сборки из реакторной установки в пенал с...
Тип: Изобретение
Номер охранного документа: 0002623102
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d6b9

Пенал для хранения несущих труб и/или штанг тепловыделяющих сборок отработавшего ядерного топлива

Изобретение относится к области хранения радиоактивных отходов, в частности к пеналам для хранения несущих элементов тепловыделяющих сборок отработавшего ядерного топлива, и может быть использовано на атомных станциях, в хранилищах отработавшего ядерного топлива. Пенал для хранения несущих труб...
Тип: Изобретение
Номер охранного документа: 0002622772
Дата охранного документа: 20.06.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e127

Способ микродугового оксидирования прутков из титановой проволоки для выполнения износостойких наплавок

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой...
Тип: Изобретение
Номер охранного документа: 0002625516
Дата охранного документа: 14.07.2017
19.01.2018
№218.016.0a55

Узел стыковки стержней армокаркаса строительной конструкции

Изобретение относится к наземному строительству, а именно к несъемной опалубке для сооружения стен, полов, перекрытий, а также к строительным конструкциям с несъемной опалубкой в целом, в частности к стенам и перекрытиям. Технический результат - упрощение стыковки стержней арматуры, что...
Тип: Изобретение
Номер охранного документа: 0002632075
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0c01

Армоопалубочный блок и строительная конструкция

Группа изобретений относится к наземному строительству. Технический результат - повышение точности и упрощение монтажа, снижение веса армоопалубочного блока и получаемой строительной конструкции, при одновременном повышении их прочности и пространственной жесткости при транспортировке и...
Тип: Изобретение
Номер охранного документа: 0002632592
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0e67

Армоопалубочный блок с несъемной опалубкой и строительная конструкция

Группа изобретений относится к наземному строительству, а именно к несъемной опалубке для сооружения стен, полов, перекрытий, а также к строительным конструкциям в целом, в частности к стенам и перекрытиям. Технический результат - снижение веса армоопалубочного блока и получаемой строительной...
Тип: Изобретение
Номер охранного документа: 0002633462
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1345

Литейный сплав на основе титана

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав...
Тип: Изобретение
Номер охранного документа: 0002634557
Дата охранного документа: 31.10.2017
Showing 1-10 of 19 items.
20.09.2013
№216.012.6aab

Способ изготовления заготовки обечайки активной зоны корпуса реактора типа ввэр

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков. Толщина стенки заготовки превышает толщину стенки...
Тип: Изобретение
Номер охранного документа: 0002492958
Дата охранного документа: 20.09.2013
10.06.2014
№216.012.cd9e

Способ оценки гамма-процентного ресурса изделия по результатам неразрушающего контроля с использованием тест-образцов со скрытыми дефектами

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002518409
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cda2

Способ оценки гамма-процентного ресурса изделия по результатам неразрушающего контроля

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002518413
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d355

Способ нанесения прецизионного фотолитографического рисунка на цилиндрическую поверхность оптической детали и приспособление для контактного экспонирования изображения для его осуществления

Изобретение относится к области оптико-электронного приборостроения и предназначено для нанесения фотолитографического рисунка на рабочую поверхность цилиндрических диафрагм оптико-механического блока в сканирующем устройстве для выработки кодового сигнала управления ориентацией по Солнцу...
Тип: Изобретение
Номер охранного документа: 0002519872
Дата охранного документа: 20.06.2014
20.10.2014
№216.012.ffce

Способ оценки степени охрупчивания материалов корпусов реакторов ввэр-1000 в результате термического старения

Использование: для оценки степени охрупчивания материалов корпусов реакторов ВВЭР-1000 в результате термического старения. Сущность изобретения заключается в том, что выполняют нагрев образцов стали корпуса реактора до температуры от 300°С, дальнейшее их старение при этой температуре в течение...
Тип: Изобретение
Номер охранного документа: 0002531342
Дата охранного документа: 20.10.2014
20.07.2015
№216.013.64ef

Способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ввэр-1000

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических...
Тип: Изобретение
Номер охранного документа: 0002557386
Дата охранного документа: 20.07.2015
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
10.06.2016
№216.015.482a

Способ замены трубопроводной арматуры на компрессорных станциях магистральных газопроводов

Изобретение относится к газовой промышленности и может быть использовано для замены трубопроводной арматуры на компрессорных станциях магистральных газопроводов. В способе над трубопроводным узлом собирают эстакаду из поперечных и продольных балок, установленных на трубчатые опоры. Перед...
Тип: Изобретение
Номер охранного документа: 0002585997
Дата охранного документа: 10.06.2016
29.12.2017
№217.015.fb55

Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник...
Тип: Изобретение
Номер охранного документа: 0002640311
Дата охранного документа: 27.12.2017
20.02.2019
№219.016.bce7

Аустенитная коррозионно-стойкая сталь

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных сталей, используемых в различных отраслях промышленности для деталей ответственного назначения. Аустенитная коррозионно-стойкая сталь, содержит компоненты в следующем соотношении, в мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002284366
Дата охранного документа: 27.09.2006
+ добавить свой РИД