×
15.10.2019
219.017.d5a0

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ СВЕРХВЫСОКИХ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В СИСТЕМЕ УДАРНИК - ИССЛЕДУЕМЫЙ ОБРАЗЕЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике. Техническим результатом является увеличение скорости ударника и, как следствие, повышение давления в системе ударник - исследуемый образец за счет создания магнитного поля с обеих сторон от ударника и изменения закона нарастания давления от времени при взаимодействии тока ударника не только с собственным, но и внешним магнитным полем. Способ формирования сверхвысоких импульсных давлений в системе ударник - исследуемый образец, включающий пропускание от источника энергии импульсного электрического тока через первичный токопровод, подводящий ток к ударнику. Создание и пропускание импульсного электрического тока в ударнике за время, меньшее времени диффузии магнитного поля через него, при этом пропускание электрического тока через ударник осуществляют до тех пор, пока температура поверхности ударника не достигнет величины, близкой к температуре плавления. Создают магнитное поле с обеих сторон от ударника путем введения вторичного токопровода с переменной проводимостью параллельно цепи ударника, введения разрядника в цепь ударника и пропускания электрического тока через первичный и вторичный токопроводы за время, большее времени диффузии магнитного поля через ударник. После создания магнитного поля осуществляют подключение ударника к первичному токопроводу с помощью разрядника, затем, изменяя проводимость, осуществляют уменьшение тока во вторичном токопроводе со скоростью, обеспечивающей создание и пропускание тока в ударнике за время, меньшее времени диффузии магнитного поля через ударник. 6 ил.

Изобретение относится к технике высоких давлений, в частности к способам, в которых для создания высоких импульсных давлений в исследуемом образце используется магнитное поле мегагауссного диапазона, и может быть использовано в физике высоких давлений для изучения свойств веществ при сильных сжатиях и для получения веществ с новыми физическими свойствами.

Известен способ формирования давления в ударнике и исследуемом образце, когда давление создается продуктами детонации заряда взрывчатого вещества (патент РФ №2122050 «Способ получения искусственных алмазов» авторов О.Б. Дреннова и др., кл. МПК С30В 29/04, B01J 3/08, опубликовано в бюл. №32, 1998 г.). Подготовленный образец размещают в герметичную ампулу сохранения, а импульсное воздействие осуществляют ударной волной взрыва внешнего заряда взрывчатого вещества. Однако известный способ имеет ограниченное применение по величине достигаемых в ударной волне давлений, на уровне от нескольких сотен килобар до двух мегабар.

Также известен способ по авторскому свидетельству №1588243 «Устройство для сжатия вещества» авторов А.И. Павловского и др., кл. МПК H01N 11/00, опубликовано в бюл. №4, 1995 г. Источником импульсного магнитного поля - магнитокумулятивным генератором сверхсильных магнитных полей в ударнике (многослойной катушке) создается давление за счет пропускания по ударнику импульсного тока за время, меньшее времени диффузии магнитного поля через него.

Данный способ позволяет получать несколько большие давления, однако он имеет ограниченное применение из-за наличия сильных разрушений всей конструкции под действием продуктов детонации заряда взрывчатого вещества, расположенного вокруг исследуемого образца.

Наиболее близким к заявляемому способу является способ формирования сверхвысоких импульсных давлений в системе ударник - исследуемый образец при пропускании по ударнику импульсного электрического тока от мощного взрывомагнитного генератора. При этом, магнитное поле создают между первичным токопроводом и ударником, а ток пропускается до тех пор, пока поверхность ударника не нагреется до температуры, близкой к температуре плавления, причем длительность пропускания тока выбирается меньше времени диффузии магнитного поля через ударник (V.A. Demidov, A.S. Boriskin, Y.V. Vlasov. Simulation of the Magnetically Accelerated Flat Strikers Using a Magnetocumulative Generator // IEEE Transactions on Plasma Science, vol. 46, No. 3, March 2018, pp.659-662). В этом способе отсутствуют разрушения исследуемого образца продуктами детонации взрывчатого вещества, так как для сжатия используется не взрывчатое вещество, а магнитное поле.

На Фиг. 1 схематично показан эскиз устройства, реализующего способ по прототипу для получения мегабарных давлений в системе ударник - исследуемый образец при пропускании импульсного тока от взрывомагнитного генератора. Устройство состоит из источника энергии - взрывомагнитного генератора 1, ключа 2, первичного токопровода 3, ударника 5, исследуемого образца 6.

Устройство работает следующим образом: импульсный ток от взрывомагнитного генератора 1 с помощью ключа 2 пропускают через первичный токопровод 3 и одновременно создают ток в ударнике 5. Причем ток пропускают за время меньшее времени диффузии магнитного поля через ударник, при этом для получения максимальных давлений пропускание электрического тока через ударник осуществляют до тех пор, пока температура поверхности ударника не достигнет величины близкой к температуре плавления. При этом достигается максимально возможное давление в ударнике при сохранении его целостности. Так как магнитное поле не успевает проникнуть за ударник, и находится только между ударником и первичным токопроводом, то на ударник действует давление этого поля. Ударник разгоняется до высоких скоростей и при столкновении с исследуемым образцом создает в нем ударную волну сверхвысокого давления. Теоретически данный способ позволяет получать магнитное давления в ударнике до 2 Мбар, а в ударной волне в исследуемом образце - до 15 Мбар. Однако для достижения предельно большой величины тока, да еще и за короткое время, требуется использовать источник энергии очень большой мощности. Для создания высоких давлений ударник необходимо разогнать до скоростей 20-30 км/с. При столь высоких скоростях за время процесса ударник успевает сместиться на значительное расстояние, при этом в разы увеличивается индуктивность токового контура, приводящая к снижению максимального тока. Компенсировать снижение тока повышением напряжения не удается, так как возрастает вероятность электрических пробоев. В итоге, ударник удается разгонять до скоростей 3-4 км/с, соответственно, ограничено и максимальное давление.

В прототипе закон нарастания тока в ударнике от времени t на начальном этапе, из-за ограничений по электрической прочности, близок к линейному. Давление в ударнике пропорционально квадрату тока, и рост давления близок к квадратичной зависимости где I0 - максимальная амплитуда тока, τ - характерное время нарастания тока, h - ширина токопровода.

Как уже отмечалось выше, увеличить скорость нарастания тока в ударнике не представляется возможным, так как с ростом производной тока растут и электрические поля, приводящие к электрическим пробоям. Кроме того, ток в ударнике ограничен джоулевым нагревом, приводящим к нагреву и плавлению проводников. Предельная величина плотности тока j в ударнике определяется интегралом тока здесь Т - время нарастания тока. Для меди величина интеграла тока до температуры плавления Jпл≈0,9⋅1017А2⋅с⋅м-4. Таким образом, из-за ограничений величины предельного тока в ударнике, ограничена и величина предельно достижимого давления.

Техническая проблема, которая стоит в данной области техники - увеличение давления в системе ударник - исследуемый образец.

Техническим результатом изобретения является увеличение скорости ударника и, как следствие, повышение давления в системе ударник - исследуемый образец за счет создания магнитного поля с обеих сторон от ударника и изменения закона нарастания давления от времени при взаимодействии тока ударника не только с собственным, но и внешним магнитным полем. В результате меняется физический принцип создания давления в ударнике с поверхностного давления магнитного поля на давление объемной силой Лоренца.

Технический результат достигается тем, что в известном способе формирования сверхвысоких импульсных давлений в системе ударник - исследуемый образец, включающий пропускание от источника энергии импульсного электрического тока через первичный токопровод подводящий ток к ударнику, создание и пропускание импульсного электрического тока в ударнике за время, меньшее времени диффузии магнитного поля через него, при этом пропускание электрического тока через ударник осуществляют до тех пор, пока температура поверхности ударника не достигнет величины, близкой к температуре плавления, новым является то, что создают магнитное поле с обеих сторон от ударника путем введения вторичного токопровода с переменной проводимостью параллельно цепи ударника, введения разрядника в цепь ударника и пропускания электрического тока через первичный и вторичный токопровода за время большее времени диффузии магнитного поля через ударник; после создания магнитного поля осуществляют подключение ударника к первичному токопроводу с помощью разрядника, затем, изменяя проводимость, осуществляют уменьшение тока во вторичном токопроводе со скоростью обеспечивающей создание и пропускание тока в ударнике за время меньшее времени диффузии магнитного поля через ударник.

В заявляемом способе ток в ударнике ограничен, так же как и в прототипе, температурой плавления ударника. Но, во-первых, из-за взаимодействия тока не только с собственным магнитным полем, но и с внешним полем вторичного токопровода, амплитуда давления имеет большую величину. Во-вторых, за счет увеличения времени пропускания тока в первичном токопроводе удается обойти ограничение обусловленное электрическими пробоями и увеличить величину пропускаемого тока. При этом, появляется возможность сокращения времени нарастания тока в ударнике, что, при выполнении требования на величину интеграла тока, приводит ^.увеличению его амплитуды по сравнению с прототипом. В итоге, изменение закона нарастания давления от времени приводит к росту максимально достижимого давления в ударнике к моменту, когда его температура поверхности достигнет температуры плавления. Поясним это формулами.

В заявляемом способе давление в ударнике равно разности давлений магнитного поля между первичным токопроводом и ударником и ударником и вторичным токопроводом. Если принять, что максимальный ток в ударнике и время его нарастания имеют ту же величину что и в прототипе (фиг.3), то получим:

То есть, рост давления происходит почти линейно и лишь в конце процесса давление перестает расти (фиг.4). Более высокая величина давления в течение всего времени воздействия позволяет ударнику приобрести большую кинетическую энергию, и, как следствие, достичь большие ударно-волновые давления в исследуемом образце. Кроме того, так как создание магнитного поля производится за время существенно большее, чем время диффузии, уменьшается и требуемая мощность источника электрической энергии.

Как видим, изменение формы кривой нарастания давления от времени приводит к более быстрому росту его амплитуды, поэтому, сохраняя темп ускорения ударника, мы можем уменьшить время нарастания тока, увеличив его амплитуду.

На Фиг. 1 показано схематическое расположение токопроводов для прототипа, где:1 - источник энергии, 2 - ключ, 3 - первичный токопровод, 5 - ударник, 6 - исследуемый образец.

На Фиг. 2 изображено расположение токопроводов для заявляемого способа, где: 1 - источник энергии, 2 - ключ, 3 - первичный токопровод, 4 - магнитное поле, 5 - ударник, 6 - исследуемый образец, 7 - разрядник, 8 - вторичный токопровод с переменной проводимостью.

На Фиг. 3 в относительных единицах приведена зависимость нарастания тока от времени для прототипа и для заявляемого способа, где: 9 - зависимость тока от времени в первичном токопроводе, 10 - зависимость тока от времени в ударнике для заявляемого способа, 11 - зависимость тока от времени во вторичном токопроводе. За единицу времени принято время диффузии магнитного поля в ударник.

На Фиг. 4 в относительных единицах приведена зависимость нарастания давления от времени для прототипа и для заявляемого способа, где: 12 - зависимость давления от времени для заявляемого способа, 13 - зависимость давления от времени для прототипа. За единицу времени принято время диффузии магнитного поля в ударник.

На Фиг. 5 приведен пример конкретного исполнения для заявляемого способа для варианта, когда ускорение ударника происходит вдоль продольной оси. Здесь 1 - источник энергии, 2 - ключ, 3 - первичный токопровод, 4 - магнитное поле, 5 - ударник, 6 - исследуемый образец, 7 - разрядник, 8 - вторичный токопровод с переменной проводимостью.

На Фиг. 6 приведен пример конкретного исполнения для заявляемого способа для варианта, когда ускорение ударника происходит по радиусу. Здесь 1 - источник энергии, 2 - ключ, 3 - первичный токопровод, 4 - магнитное поле, 5 - ударник, 6 - исследуемый образец, 7 - разрядник, 8 - вторичный токопровод с переменной проводимостью.

Один из вариантов устройства, реализующего данный способ, представлен на Фиг. 5, в соответствие с которым источник энергии 1 (конденсаторная батарея с приведенной емкостью 1,8 Ф с энергозапасом 1,8 МДж) через ключ 2 подключают к первичному токопроводу 3 - коаксиальной системе электродов (диаметр 50 мм), соединенной последовательно со вторичным токопроводом 8 с переменной проводимостью (четыре полоски медной фольги шириной по 400 мм). Ударник 5 (алюминиевая пластина 10×10 мм, толщиной 5 мм) с помощью разрядника 7 (четырех взрывных замыкателей с медными шайбами диаметром по 12 мм) подключают параллельно вторичному токопроводу. Ударник 5 и исследуемый образец 6 (медная пластина толщиной 10 мм) образуют систему для создания мегабарных давлений.

Данное устройство работает следующим образом.

Для ударника из алюминия толщиной 5 мм время диффузии магнитного поля составляет 7 мкс Ток амплитудой 10 МА от источника энергии 1 с напряжением 1,4 кВ через ключ 2 пропускают через первичный токопровод 3 и вторичный токопровод 8. При диаметре первичного токопровода 50 мм между первичным токопроводом и ударником и вторичным токопроводом и ударником за время 250 мкс, почти в 40 раз превышающее время диффузии, создается магнитное поле с индукцией 80 Тл. Затем, на 250 мкс подключают разрядник 7 и за счет изменения проводимости (уменьшения проводимости при нагреве собственным током) производят разрыв токового контура вторичного токопровода 8 и уменьшают в нем ток до 4-5 МА за время 5 мкс, при этом в ударнике 5 за время меньше чем время диффузии наводится ток амплитудой 5-6 МА. Пропускание тока через ударник осуществляют до тех пор, пока температура поверхности не достигнет температуры плавления. За счет разности амплитуды магнитного поля за ударником и перед ударником, в ударнике создается магнитное давление амплитудой около 0,4 Мбар. И при времени разгона 5 мкс скорость ударника достигает 10 км/с. Так как время создания магнитного поля в 50 раз превышало время создания давления, примерно во столько же раз снижается и требуемая мощность источника энергии. В данном случае мощность источника энергии не превышает 10 ГВт. Для прототипа при той же мощности источника энергии и той же скорости роста тока в первичном токопроводе удается достичь скоростей 4-5 км/с, то есть в два раза меньших. Соответственно для прототипа примерно в четыре раза меньше будут и ударные давления.

По другому варианту устройства, реализующего данный способ, представленному на Фиг. 6, источник энергии 1 с временем разряда 2 мкс через ключ 2 подключают к первичному токопроводу 3 - коаксиальной системе электродов (диаметр 50 мм), соединенной последовательно со вторичным токопроводом 8 с переменной проводимостью (токопровод в виде плазменного канала длиной 20 мм, пережимаемого зарядом взрывчатого вещества). Ударник 5 (алюминиевая пластина 10×10 мм, толщиной 1,2 мм) с помощью разрядника 7 (четыре взрывных замыкателя на диаметре 50 мм) подключают параллельно вторичному токопроводу 8. Ударник и исследуемый образец 6 (медная пластина толщиной 10 мм) образуют систему для создания мегабарных давлений.

Данное устройство работает следующим образом.

Для ударника из алюминия толщиной 1,2 мм время диффузии магнитного поля составляет 0,6 мкс. Ток амплитудой 3,5 МА от источника энергии 1 через ключ 2 пропускают через первичный токопровод 3 и вторичный токопровод 8 в течение 1 мкс. При диаметре первичного токопровода 50 мм между первичным токопроводом и ударником и вторичным токопроводом и ударником за время большее времени диффузии создается магнитное поле с индукцией 20 Тл. Затем, подключают разрядник 7 и при уменьшении проводимости вторичного токопровода 8 (при подрыве заряда ВВ) за время 0,5 мкс производят разрыв токового контура вторичного токопровода и уменьшают в нем ток. При этом в ударнике 5 за время 0,5 мкс создается ток 5 МА. (3,5 МА за счет уменьшения тока во вторичном токопроводе и 1,5 МА за счет роста тока в первичном токопроводе). Пропускание тока через ударник осуществляют до тех пор, пока температура поверхности не достигнет температуры плавления. В итоге, в ударнике создается магнитное давление амплитудой около 1,5 Мбар. Для прототипа, при том же источнике энергии, максимальный ток имеет в полтора раза меньшую амплитуду - 3,5 МА, и в два раза меньшее давление - 0,75Мбар.

Способ формирования сверхвысоких импульсных давлений в системе ударник - исследуемый образец, включающий пропускание от источника энергии импульсного электрического тока через первичный токопровод, подводящий ток к ударнику, создание и пропускание импульсного электрического тока в ударнике за время, меньшее времени диффузии магнитного поля через него, при этом пропускание электрического тока через ударник осуществляют до тех пор, пока температура поверхности ударника не достигнет величины, близкой к температуре плавления, отличающийся тем, что создают магнитное поле с обеих сторон от ударника путем введения вторичного токопровода с переменной проводимостью параллельно цепи ударника, введения разрядника в цепь ударника и пропускания электрического тока через первичный и вторичный токопроводы за время, большее времени диффузии магнитного поля через ударник; после создания магнитного поля осуществляют подключение ударника к первичному токопроводу с помощью разрядника, затем, изменяя проводимость, осуществляют уменьшение тока во вторичном токопроводе со скоростью, обеспечивающей создание и пропускание тока в ударнике за время, меньшее времени диффузии магнитного поля через ударник.
СПОСОБ ФОРМИРОВАНИЯ СВЕРХВЫСОКИХ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В СИСТЕМЕ УДАРНИК - ИССЛЕДУЕМЫЙ ОБРАЗЕЦ
СПОСОБ ФОРМИРОВАНИЯ СВЕРХВЫСОКИХ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В СИСТЕМЕ УДАРНИК - ИССЛЕДУЕМЫЙ ОБРАЗЕЦ
СПОСОБ ФОРМИРОВАНИЯ СВЕРХВЫСОКИХ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В СИСТЕМЕ УДАРНИК - ИССЛЕДУЕМЫЙ ОБРАЗЕЦ
СПОСОБ ФОРМИРОВАНИЯ СВЕРХВЫСОКИХ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В СИСТЕМЕ УДАРНИК - ИССЛЕДУЕМЫЙ ОБРАЗЕЦ
Источник поступления информации: Роспатент

Showing 301-310 of 796 items.
10.05.2018
№218.016.4a28

Способ управления газоприходом в пороховой баллистической установке и установка для его осуществления

Группа изобретений относится к пороховым баллистическим установкам (ПБУ), используемым в качестве разгонных устройств в стендах для испытаний конструкций на воздействие интенсивных механических нагрузок. Управление газоприходом в ПБУ включает инициирование порохового заряда, установленного в...
Тип: Изобретение
Номер охранного документа: 0002651327
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4aa0

Генератор высокочастотных импульсов на основе разряда с полым катодом

Изобретение относится к области высокочастотной техники и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Генератор высокочастотного излучения на основе разряда с полым катодом содержит газоразрядную камеру, образованную целым катодом и анодом, к электродам...
Тип: Изобретение
Номер охранного документа: 0002651580
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4aa9

Газоразрядный источник света

Изобретение относится к газоразрядным излучателям, предназначено для использования в области светотехники и может быть использовано для фотограмметрических исследований. Заявляемый газоразрядный источник света содержит заполненную рабочим газом газоразрядную камеру, образованную установленными...
Тип: Изобретение
Номер охранного документа: 0002651579
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b6c

Высоковольтная система электропитания сверхвысокочастотного генератора

Изобретение относится к области импульсной техники, а именно к высоковольтным импульсным источникам электропитания сверхвысокочастотных (СВЧ) прямопролетных генераторов и усилителей. Высоковольтная система электропитания сверхвысокочастотного генератора клистронного типа с рекуперацией энергии...
Тип: Изобретение
Номер охранного документа: 0002651578
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4d89

Бронезащитная преграда

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям. Бронезащитная преграда содержит гофрированный слой, выполненный из рессорно-пружинной стали, и фронтальный слой из керамического материала. На тыльную сторону гофрированного слоя устанавливается...
Тип: Изобретение
Номер охранного документа: 0002652416
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d8e

Устройство защиты от кумулятивной струи и осколков взрыва

Изобретение относится к области броневых конструкций, устанавливаемых в частности в камерах специального назначения. Устройство защиты от кумулятивной струи и осколков взрыва содержит установленный в направлении поражающего воздействия перед защищаемым объектом защитный блок, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002652323
Дата охранного документа: 25.04.2018
18.05.2018
№218.016.5072

Способ электроэрозионной обработки

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов...
Тип: Изобретение
Номер охранного документа: 0002653041
Дата охранного документа: 04.05.2018
18.05.2018
№218.016.51b1

Система охранной сигнализации на основе излучающего кабеля

Изобретение относится к охранной сигнализации. Технический результат заключается в обеспечении выравнивания чувствительности вдоль рубежа обнаружения, повышении помехоустойчивости и уровня обнаружения. Система на основе излучающего кабеля включает передающий излучающий кабель и приемный...
Тип: Изобретение
Номер охранного документа: 0002653307
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.51f6

Стенд для исследования высокоскоростных соударений

Изобретение относится к метательным установкам для исследования высокоскоростных соударений. Стенд для исследования высокоскоростных соударений содержит метательную установку, устройство отделения поддона от метаемого тела и вакуумную трассу, состоящую из последовательно расположенных и...
Тип: Изобретение
Номер охранного документа: 0002653107
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5325

Ампульный химический источник тока и способ его сборки

Изобретение относится к области электротехники, а именно к резервному химическому источнику тока ампульного типа, запускаемому в работу при подаче электролита из ампулы в электродный отсек блока электрохимических элементов (ЭХЭ). Ампульный химический источник тока (АХИТ) включает расчетное...
Тип: Изобретение
Номер охранного документа: 0002653860
Дата охранного документа: 15.05.2018
Showing 21-28 of 28 items.
18.05.2019
№219.017.53f8

Диодный узел генератора сверхвысокочастотного излучения

Устройство относится к сверхвысокочастотной (СВЧ) технике и может быть использовано в мощных генераторах сверхвысокочастотного излучения. Техническая задача предлагаемого решения состоит в усовершенствовании диодного узла для СВЧ генераторов с виртуальным катодом. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002279153
Дата охранного документа: 27.06.2006
18.05.2019
№219.017.58a4

Импульсный генератор

Генератор относится к высоковольтной импульсной технике, к преобразовательной технике и может быть использован в частности для запитки геофизических диполей, соленоидов с высоким энергозапасом, для испытания силовых трансформаторов путем их нагружения килоамперными токами большой длительности и...
Тип: Изобретение
Номер охранного документа: 0002322755
Дата охранного документа: 20.04.2008
18.05.2019
№219.017.5a51

Клистрон

Изобретение «Клистрон» относится к сверхвысокочастотной (СВЧ) технике, а именно к области генерации электромагнитного излучения, и может быть использовано при создании генераторов мощного СВЧ-излучения. Клистрон содержит установленный в вакуумной камере и подключенный к внешнему источнику...
Тип: Изобретение
Номер охранного документа: 0002404477
Дата охранного документа: 20.11.2010
29.05.2019
№219.017.6582

Устройство коммутации передающей линии

Устройство коммутации передающей линии, преимущественно на передающую линию с тем же волновым сопротивлением, включает в себя корпус с изолированными внутри него электродами разрядника, управляющий электрод и общий проводник. Общий проводник линий выполнен в виде отдельных проводников, каждый...
Тип: Изобретение
Номер охранного документа: 0002390924
Дата охранного документа: 27.05.2010
29.05.2019
№219.017.65ac

Клистронный генератор

Изобретение относится к технике СВЧ, может быть использовано при разработке мощных источников сверхвысокочастотного излучения для целей радиолокации, навигации и техники ускорителей элементарных частиц. Клистронный генератор содержит систему формирования магнитного поля, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002396632
Дата охранного документа: 10.08.2010
29.05.2019
№219.017.65c7

Сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком

Область техники - генерирование электромагнитных волн на основе колебаний виртуального катода (ВК). Может быть использовано при создании генераторов сверхвысокочастотного (СВЧ) излучения. Сущность изобретения: сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком...
Тип: Изобретение
Номер охранного документа: 0002395132
Дата охранного документа: 20.07.2010
09.06.2019
№219.017.7a32

Высокочастотный генератор на основе разряда с полым катодом

Изобретение относится к высокочастотной технике и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Высокочастотный генератор на основе разряда с полым катодом содержит газоразрядную камеру, образованную полым катодом, обращенным открытой полостью в сторону...
Тип: Изобретение
Номер охранного документа: 0002387039
Дата охранного документа: 20.04.2010
19.06.2019
№219.017.849d

Способ сохранения числа электронов в процессе ускорения в бетатроне

Изобретение относится к ускорительной технике и может быть использовано при разработке и усовершенствовании индукционных циклических ускорителей. Техническим результатом предлагаемого изобретения является устранение поперечной неустойчивости электронного пучка и сохранение числа захваченных в...
Тип: Изобретение
Номер охранного документа: 0002281622
Дата охранного документа: 10.08.2006
+ добавить свой РИД