×
12.10.2019
219.017.d556

Способ измерения скорости судна доплеровским лагом

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002702696
Дата охранного документа
09.10.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - повышение эксплуатационных характеристик доплеровского лага. Технический результат - повышение точности измерения скорости судна в условиях качки. Указанный технический результат достигается путем применения следующих двух технических решений: 1) выбором длительности зондирующего сигнала Т из условия минимума функции где Δƒ - расширение спектра эхосигнала вследствие качки; - скорости изменения угла крена судна при излучении зондирующего сигнала и приеме эхосигнала соответственно, град/с; Т - длительность зондирующего сигнала, с; ƒ - частота зондирующего сигнала, Гц; ƒ - частота эхосигнала, Гц; V - скорость судна, м/с; ψ - угол между направлением излучения и направлением вертикально вниз, град; ψ - угол между направлением прихода эхосигнала и направлением вертикально вниз, град; C - скорость звука в воде в месте расположения приемно-излучающей антенны, м/с; 2) излучением на одном цикле измерения скорости судна N тональных зондирующих сигналов, количество которых определяют по формуле где Н - глубина под килем, C - скорость звука в воде, измерением частоты каждого обнаруженного эхосигнала и осреднением измеренных частот всех обнаруженных эхосигналов (ил. 5). 1 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения скорости судна доплеровским методом.

Одним из условий безопасного кораблевождения является постоянный контроль абсолютной (относительно дна) скорости судна с использованием доплеровского лага (ДЛ) [1-6].

Физическим принципом, заложенным в работу ДЛ, является измерение доплеровского сдвига частоты эхосигнала (ЭС), отраженного от дна, относительно частоты излученного тонального зондирующего сигнала (ЗС) (фиг. 1). Этот сдвиг частот несет в себе информацию о скорости судна в соответствии с формулой [1]:

где

ƒЗС - частота ЗС, Гц;

ƒЭС - частота ЭС, Гц;

V - скорость судна, м/с;

ψизл - угол между направлением излучения ЗС и направлением вертикально вниз, град;

ψnp - угол между направлением прихода ЭС и направлением вертикально вниз, град;

C - скорость звука в воде в месте расположения приемно-излучающей антенны, м/с.

Из (1) следует, что скорость судна может быть вычислена по формуле

Поскольку значения параметров ƒЗC и ψизл считаются известными и ψnp ≈ ψизл для определения скорости судна нужно измерить и C и ƒЭС и по формуле (2) вычислить скорость судна. Точность измерения скорости судна в основном определяется точностью измерения частоты ЭС в соответствие с формулой [1]:

где - среднеквадратические погрешности (СКП) измерения скорости судна и частоты ЭС, соответственно.

СКП измерения частоты ЭС в частотной области вычисляется по формуле [1]:

где ТЗС - длительность ЗС, с.

Из формулы (4) следует, что СКП измерения частоты ЭС обратно пропорциональна длительности ЗС. Следовательно, для повышения точности измерения частоты ЭС длительность ЗС необходимо выбирать максимально возможной. Верхним пределом длительности ЗС является время распространения сигнала до дна и обратно за вычетом времени переходных процессов. Работа [1] рекомендует длительность ЗС рассчитывать по формуле:

где Н - глубина под килём судна.

На фиг. 2 приведена зависимость СКП измерения скорости судна от глубины под килём при отсутствии качки судна, рассчитанная для типового случая (ƒЗС=22,5 кГц; ψизл=350; C=1500) по формуле (3) с учетом формул (4) и (5). Из рассмотрения графика (фиг. 2) следует, что на глубинах более 0,1 км СКП измерения скорости не превышает 0,1 м/с.

Однако все приведенные выше формулы и оценки справедливы для случая отсутствия качки судна.

Негативное влияние качки судна (главным образом, бортовой) на измерение его скорости проявляется в следующем:

1) в возможной потере контакта с дном, что имеет место, когда направление прихода ЭС не попадает в характеристику направленности (ХН) антенны;

2) в нарушении симметрии относительно горизонта направлений излучения ЗС и приема ЭС;

3) в изменении направления излучения ЗС и приема ЭС на интервале длительности ЗС.

В первом случае проблема решается путем приема ЭС на плотно заполненный веер ХН [7].

Во втором случае негативное влияние устраняется применением схемы "Янус", при которой одновременно формируются две симметричные и ориентированные в противоположные стороны характеристики направленности приемно-излучающей антенны (фиг. 3) [1, 2].

В третьем случае негативное влияние проявляется в расширении спектра ЭС вследствие качки, что ведет к снижению точности измерения его частоты и, в конечном счете, скорости судна. Оценим этот эффект количественно.

Формула (1) при изменении углов ψизл и ψnp на интервале длительности ЗС (при V << C) примет вид [1]:

где t - время, отсчитываемое от момента начала (t=0) до момента окончания (t=ТЗС) приема ЭС.

Из формулы (6) следует, что расширение спектра ЭС Δƒ(ТЗС) в зависимости от длительности ЗС можно вычислить следующим образом:

где ƒЭС (0), ƒЭСЗС) - частоты ЭС в моменты начала и окончания приема ЭС;

- скорость изменения угла крена в процессе излучения ЗС и приема ЭС соответственно. (Изменение угла дифферента не рассматривается, поскольку килевая качка, как правило, существенно меньше бортовой).

С учетом расширения спектра ЭС вследствие качки формула (4) принимает вид

Подставляя формулу (8) в формулу (3) получим:

На фиг. 4 приведена рассчитанная для типовых случаев (V=6-24 уз; ƒЗС=22,5 кГц; ψизл=350; C=1500) по формуле (9) зависимость СКП измерения скорости судна от длительности ЗС. Параметром графиков является скорость судна, которая, как видно из формулы (7), пропорционально влияет на расширение спектра ЭС при наличии качки судна.

Из рассмотрения графиков фиг. 4 следует, что при увеличении длительности ЗС СКП измерения скорости судна сначала уменьшается, а затем возрастает, что является следствием того, что первое слагаемое в скобках в формуле (8) при увеличении длительности ЗС уменьшается, а второе слагаемое, наоборот, возрастает. Минимум СКП измерения скорости судна имеет место (в зависимости от скорости судна) при длительности ЗС в интервале от 0,3 с до 0,8 с.

Из графиков фиг. 4 также следует, что СКП измерения скорости судна на качке при всех значениях длительности ЗС существенно больше, чем в случае отсутствия качки (фиг. 2), что диктует необходимость поиска технических решений, обеспечивающих уменьшение СКП измерения скорости в условиях качки.

В качестве прототипа выберем способ измерения скорости судна доплеровским лагом по патенту [7], включающий излучение под наклоном ко дну тонального зондирующего сигнала, формирование для приема эхосигнала, отраженного от дна, двумерного веера характеристик направленности, перекрывающего сектор телесных углов, в котором в условиях бортовой и килевой качек на волнении возможен приход эхосигнала, отраженного от дна, обнаружение отраженного от дна эхосигнала, измерение частоты обнаруженного эхосигнала, с использованием которой вычисление скорости судна.

Решаемая техническая проблема - повышение эксплуатационных характеристик доплеровского лага.

Технический результат - повышение точности измерения скорости судна в условиях качки.

Существо предлагаемого способа состоит:

1) в выборе длительности ЗС ТЗС, соответствующей при текущих значениях скорости изменения угла крена, скорости судна и глубины под килём минимуму СКП измерения скорости судна, рассчитываемой по формуле (9);

2) в излучении на одном цикле измерения скорости судна не одного ЗС, а последовательности из следующих друг за другом с интервалом, равным длительности ЗС ТЗС, NЗC ЗС, количество которых определяется по формуле

с последующим осреднением измеренных частот всех NЗC ЭС.

СКП измерения скорости судна в результате предложенных технических решений определится по формуле:

где Δƒ (ТЗС) вычисляется по формуле (7).

На фиг. 5 приведена рассчитанная по формуле (11) для типовых случаев (V=6-24 уз; ƒЗС=22,5 кГц; ψ=350; C=1500) и TЗС=0,5 с зависимость СКП измерения скорости судна от глубины под килём. Количество NЗC излученных ЗС на одном цикле измерения скорости судна для рассматриваемых типовых случаев составляет от одного при глубинах под килём менее 1,5 км до четырех при глубине под килём 6 км.

Из рассмотрения графиков фиг. 5 и сравнения их с графиками фиг. 2 следует, что при применении названных выше технических решений СКП измерения скорости судна в условиях наличия качки незначительно отличается от СКП измерения скорости судна при отсутствии качки.

Таким образом, заявленный технический результат - повышение точности измерения скорости судна в условиях качки - можно считать достигнутым.

Физическая реализуемость заявляемого метода подтверждена выполненной разработкой и испытаниями доплеровского лага.

Источники информации:

1. Виноградов К.А., Кошкарев В.Н., Осюхин Б.А., Хребтов А.А. Абсолютные и относительные лаги // Л.; Судостроение, 1990.

2. Хребтов А.А., Виноградов К.А., Кошкарев В.Н., и др. Судовые измерители скорости // Л.; Судостроение, 1978.

3. Гидроакустические навигационные средства. Под ред. В.В. Богородского. // Л.: Судостроение, 1983. 262 с.

4. Богородский В.В., Гидроакустическая техника исследования и освоения океана //Л.; Гидрометиздат, 1984.

5. Виноградов К.А., Новиков И.А., Гидроакустические навигационные системы и средства // ГНИНГИ МО РФ, Навигация и гидрография, 1999, №7.

6. Патент РФ №2439613. Гидроакустический доплеровский лаг с алгоритмом многоальтернативной фильтрации эхосигнала, основанным на использовании банка фильтров Калмана.

7. Патент РФ №2659710. Способ измерения скорости судна доплеровским лагом.


Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Способ измерения скорости судна доплеровским лагом
Источник поступления информации: Роспатент

Showing 1-10 of 87 items.
27.06.2015
№216.013.5a2b

Способ измерения физической неэлектрической величины

Изобретение относится к области приборостроения и может быть использовано при разработке и производстве измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков линейных, угловых ускорений и т.д. Согласно заявленному изобретению преобразуют измеряемую...
Тип: Изобретение
Номер охранного документа: 0002554624
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a2f

Способ выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002554628
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a32

Стенд для выработки угловых колебаний в двух плоскостях

Предложенное изобретение используется для оценки динамических погрешностей микромеханических и других малогабаритных инерциальных систем. Заявленный стенд предназначен для выработки угловых колебаний в двух плоскостях, изменяющихся по гармоническому закону в расширенном частотном диапазоне,...
Тип: Изобретение
Номер охранного документа: 0002554631
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5e5e

Устройство для напыления тонкопленочных покрытий на сферические роторы электростатического гироскопа

Изобретение относится к устройствам для напыления покрытий на сферические роторы электростатических гироскопов и может быть использовано в точном приборостроении. Устройство содержит вакуумную камеру, внутри которой размещены источник распыления и механизм вращения ротора в виде двух рамок,...
Тип: Изобретение
Номер охранного документа: 0002555699
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.6863

Способ обнаружения и сопровождения целей циклически работающей системой наблюдения, состоящей из нескольких разнородных приемных каналов

Изобретение относится к области создания систем наблюдения, состоящих из нескольких разнородных приемных каналов. Существо предлагаемого изобретения состоит в том, что если условию идентичности наблюдаемой и комплексной цели удовлетворяет несколько комплексных целей, то из них выбирается та,...
Тип: Изобретение
Номер охранного документа: 0002558276
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.72fc

Микромеханический вибрационный гироскоп

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости движения основания, как вибрационные гироскопы. Микромеханический вибрационный гироскоп содержит основание, инерционный диск, имеющий одинаковую толщину и...
Тип: Изобретение
Номер охранного документа: 0002561006
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.96cb

Способ определения погрешностей двухстепенного поплавкового гироскопа с газодинамическим подвесом ротора гиромотора

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом оси вращения ротора гиромотора. Технический результат - повышение точности. Для этого в известном способе...
Тип: Изобретение
Номер охранного документа: 0002570223
Дата охранного документа: 10.12.2015
20.03.2016
№216.014.ca96

Способ бесплатформенной инерциальной навигации на микромеханических чувствительных элементах

Изобретение относится к навигационной технике, а именно к способам бесплатформенной инерционной навигации малогабаритных движущихся объектов. Способ бесплатформенной инерциальной навигации заключается в том, что на борту подвижного объекта устанавливают микромеханические гироскопы и...
Тип: Изобретение
Номер охранного документа: 0002577567
Дата охранного документа: 20.03.2016
10.06.2016
№216.015.4665

Способ изготовления ротора электростатического гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве электростатических гироскопов. Способ изготовления ротора электростатического гироскопа содержит этапы, на которых: формируют из сплошной заготовки сферическую поверхность ротора, выполняют...
Тип: Изобретение
Номер охранного документа: 0002586396
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bcf

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Двухстепенной поплавковый гироскоп содержит корпус с двумя торцевыми крышками, цилиндрическую поплавковую гирокамеру, установленную в...
Тип: Изобретение
Номер охранного документа: 0002594628
Дата охранного документа: 20.08.2016
Showing 1-10 of 37 items.
10.09.2013
№216.012.68ec

Способ обработки информации в гидроакустической антенне

Использование: изобретение относится к области гидроакустики, а именно к способу обработки информации в гидроакустической антенне. Сущность: рассматривается способ снижения структурной составляющей помехи в сигнале гидроакустического приемника, жестко закрепленного на корпусе антенны,...
Тип: Изобретение
Номер охранного документа: 0002492507
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7fa9

Способ оценки полного профиля вертикального распределения скорости звука

Использование: изобретение относится к области гидроакустики и может быть применено при формировании оценки полного профиля вертикального распределения скорости звука (ВРСЗ) по его измеренному в некотором диапазоне глубин фрагменту. Сущность: в способе осуществляется достраивание полного...
Тип: Изобретение
Номер охранного документа: 0002498354
Дата охранного документа: 10.11.2013
27.04.2014
№216.012.bd1f

Способ распознавания ложных целей, вызванных собственными помехами подвижного носителя

Изобретение относится к областям гидроакустики и радиолокации и может быть применено в автоматических системах вторичной обработки радиолокационных и гидроакустических станций, установленных на подвижном носителе. В нем рассматривается способ снижения вероятности ложной тревоги за счет...
Тип: Изобретение
Номер охранного документа: 0002514154
Дата охранного документа: 27.04.2014
27.11.2014
№216.013.0b10

Способ получения упругого и звукопоглощающего полимерного материала с термопластичными микросферами

Изобретение относится к технологии изготовления упругих, звукопоглощающих и звукоизолирующих композиций на основе полиуретанов и термопластичных микросфер. Способ получения композиции из полимерного материала и порошкообразного наполнителя содержит процессы смешения компонентов, удаления...
Тип: Изобретение
Номер охранного документа: 0002534240
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1078

Бескорпусная гидроакустическая антенна

Изобретение относится к области гидроакустики, а именно к гидроакустическим антеннам, и может быть использовано в гидроакустических донных или опускаемых станциях различного назначения. Задача изобретения - повышение эффективности работы гидроакустических станций. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002535639
Дата охранного документа: 20.12.2014
27.07.2015
№216.013.6863

Способ обнаружения и сопровождения целей циклически работающей системой наблюдения, состоящей из нескольких разнородных приемных каналов

Изобретение относится к области создания систем наблюдения, состоящих из нескольких разнородных приемных каналов. Существо предлагаемого изобретения состоит в том, что если условию идентичности наблюдаемой и комплексной цели удовлетворяет несколько комплексных целей, то из них выбирается та,...
Тип: Изобретение
Номер охранного документа: 0002558276
Дата охранного документа: 27.07.2015
10.05.2018
№218.016.4423

Способ определения координат (пеленга и дистанции) и параметров движения (курса и скорости) морской шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным способам определения координат (пеленга и дистанции) и параметров движения (курса и скорости) морской шумящей цели (далее КПДЦ) по информации шумопеленгаторных станций (далее ШПС), установленных на подвижных носителях...
Тип: Изобретение
Номер охранного документа: 0002649887
Дата охранного документа: 05.04.2018
29.05.2018
№218.016.56ff

Способ формирования характеристики направленности плоской, горизонтально расположенной многоэлементной излучающей антенны доплеровского лага

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - уменьшение погрешности измерения собственной скорости судна и увеличение предельной глубины работы лага без увеличения цены и габаритов...
Тип: Изобретение
Номер охранного документа: 0002655020
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570a

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Достигаемый технический результат - повышение надежности обнаружения эхосигналов, отраженных от морского дна, при наличии во входном сигнале, кроме эхосигналов, отраженных от...
Тип: Изобретение
Номер охранного документа: 0002655019
Дата охранного документа: 23.05.2018
05.07.2018
№218.016.6c3b

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - увеличение надежности и точности работы доплеровского лага без значительного увеличения цены и габаритов аппаратуры. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002659710
Дата охранного документа: 03.07.2018
+ добавить свой РИД