×
12.10.2019
219.017.d50f

Результат интеллектуальной деятельности: СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта. Сигнализатор температуры содержит генератор прямоугольных импульсов из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по кольцевой схеме. Выходом генератора прямоугольных импульсов является выход любого выбранного инвертора. К каждому выходу инвертора подключают конденсатор. Конденсаторы используют в качестве температурочувствительных элементов и размещают на объекте регулирования температуры. Выход генератора прямоугольных импульсов соединяют со входом преобразователя частота-напряжение. Выход преобразователя соединяют с первым входом компаратора. Второй вход компаратора соединяют с выходом задатчика температуры срабатывания. Выход компаратора соединяют со входом регистратора. Технический результат - расширение диапазона регулирования уставки температуры. 3 ил.

Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта.

Известно устройство содержащее конденсатор, генератор и индикатор (см. а.с. 970136, МПК G01K 7/34, авторов Харитонов П.Т., Спирчев Ю.А. «Устройство для измерения температуры», опубл. 30.10.82. Бюл. №40). Недостатком устройства является то, что для измерения температуры объекта необходимы значительные аппаратные и временные затраты на измерение частоты генератора и добротности колебательного контура.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является сигнализатор температуры, содержащий генератор прямоугольных импульсов, конденсатор, задатчик температуры срабатывания, преобразователь частота-напряжение, регистратор (см. а.с. 1525480, МПК G01K 7/34, авторов Шильников А.В., Штернберг А.Р., Бурханов А.И. и др. "Релейный датчик температуры", опубл. 30.11.89. Бюл. №44) и принятое за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, принятого за прототип, является возможность задания только одной температуры объекта, при которой срабатывает устройство. Для перестройки устройства на другую фиксированную температуру, необходим демонтаж термоконденсатора, используемого в качестве задатчика уставки температуры, изменение физических и/или химических свойств задатчика и возврат задатчика в устройство.

Технический результат - расширение диапазона регулирования уставки температуры.

Технический результат достигается тем, что в известном сигнализаторе температуры, содержащем генератор прямоугольных импульсов, конденсатор, и выход генератора прямоугольных импульсов с одной стороны соединен с конденсатором, задатчик температуры срабатывания, преобразователь частота-напряжение и регистратор, особенность заключается в том, что в него дополнительно введен компаратор, так, что выход генератора прямоугольных импульсов соединен с другой стороны со входом преобразователя частота-напряжение, выход которого соединен с первым входом компаратора, а второй вход компаратора соединен с выходом задатчика температуры срабатывания и выход компаратора соединен со входом регистратора, при этом генератор прямоугольных импульсов состоит из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по кольцевой схеме, и количество конденсаторов равно количеству инверторов, а выход каждого инвертора соединен с одним из конденсаторов, и выходом генератора прямоугольных импульсов является выход любого выбранного инвертора.

Сущность изобретения заключается в следующем. Сигнализатором температуры является устройство, на выходе которого выходной сигнал изменяется скачкообразно при достижении заданной задатчиком уставки температуры (температуры срабатывания или отпускания) (см. ГОСТ 23125-95. Сигнализаторы температуры. Общие технические условия). Известно, что для измерения температур используют термоконденсаторы с сегнетоэлектриком в качестве диэлектрического материала (см., например, Иванова Н.Ю., Комарова И.Э., Бондаренко И.Б., Электрорадиоэлементы. Часть 2. Электрические конденсаторы. - СПб: Университет ИТМО, 2015. С. 85, 86). Достоинством использования конденсаторов для измерения температуры является их незначительный собственный нагрев из-за реактивного характера сопротивления, что уменьшает погрешность измерения. Емкость, конденсатора зависит от его размеров, геометрии и материала диэлектрика. Так емкость плоского конденсатора равна

где ε - диэлектрическая проницаемость материала диэлектрика; ε0 - электрическая постоянная; S - площадь пластины конденсатора; d - расстояние между пластинами. У сегнетоэлектриков диэлектрическая проницаемостью ε сильно зависит от температуры, поэтому конденсаторы используют в качестве преобразователя изменения температуры ΔT в изменение емкости ΔC с помощью температурного коэффициента емкости ТКЕ [Ф/град]

Зависимость (2) нелинейная, так как диэлектрическая проницаемость материала диэлектрика ε и, соответственно, температурный коэффициент емкости ТКЕ нелинейные величины. Для одного и того же конденсатора ТКЕ и положительно и отрицательно в разных диапазонах температур. Известные по справочным материалам термоконденсаторы имеют ограниченную номенклатуру по номиналу емкостей. Эти факторы ограничивают использование сегнетоэлектрических конденсаторов для широкого применения. Кроме того, в прототипе в качестве задатчика температуры срабатывания используют один из термоконденсаторов, и для перенастройки уставки температуры необходимо его демонтировать, изменить физические и/или химические свойства задатчика и монтировать задатчик повторно в устройство, что значительно сокращает функциональные возможности сигнализатора температуры. В аналоге и прототипе термоконденсаторы изготавливают с заданными характеристиками, что увеличивает стоимость устройства.

В предлагаемом сигнализаторе температуры в качестве температурочувствительного элемента используют конденсаторы на основе конденсаторной керамики с диэлектрической проницаемостью меньше, чем у сегнетоэлектриков. Для увеличения чувствительности устройства в качестве генератора необходимо использовать кольцевой генератор из нечетного количества инверторов цифровых интегральных микросхем (см. Сергеев, В.А. Кольцевые генераторы: принципы построения, характеристики и применение / В.А. Сергеев, Я.Г. Тетенькин // Успехи современной радиоэлектроники. 2015. №12. _ С. 77-92), как показано на фиг. 1. Выход каждого инвертора нагружен на конденсатор С одного и того же номинала.

Время задержки распространения сигнала одним инвертором τзад определяется временем достижения входного сигнала порогового напряжения переключения логического состояния инвертора, которое в свою очередь определяется входной Свх и выходной Свых емкостью инвертора и внутренним сопротивлением инвертора. При выборе емкости конденсаторов С больше чем суммарная входная Свх и выходная Свых емкости инвертора С>>Свхвых, время задержки распространения сигнала τзад будет определяться емкостью С. Если допустить, что входное сопротивление инвертора Rвх равно выходному Rвых и равно R, то τзад ≈ 0,7RC (см., например, Зельдин Е.А. Импульсные устройства на микросхемах. - М.: Радио и связь, 1991. стр. 44). Частота кольцевого генератора равна

Изменение частоты генерации при изменении температуры F(T) после подстановки выражения (2) в (3) будет иметь следующий вид:

Из формулы (4) видно, что изменение емкости кольцевого генератора увеличивается в m раз, что позволяет использовать конденсаторы с диэлектриком из керамики с диэлектрической проницаемостью меньшей, чем у сегнетоэлектриков.

В зависимости от выбора знака температурного коэффициента емкости ТКЕ, частота следования импульсов генератора с увеличением температуры будет уменьшаться или увеличиваться. Структурная схема устройства при этом не изменится. Изменение температуры и частоты кольцевого генератора будут происходить синфазно, если ТКЕ отрицательный, и противофазно, если ТКЕ положительный. При синфазном изменении температуры и частоты увеличение температуры приведет к уменьшению емкости конденсаторов С и к увеличению частоты F кольцевого генератора. Отрицательный ТКЕ имеют конденсаторы с группой температурной стабильности М (см., например, Иванова Н.Ю., Комарова И.Э., Бондаренко И.Б., Электрорадиоэлементы. Часть 2. Электрические конденсаторы. - СПб: Университет ИТМО, 2015. С. 10). Положительный и отрицательный ТКЕ имеют конденсаторы с группой температурной стабильности Н. На фиг. 2 показана экспериментальная зависимость частоты F кольцевого генератора от температуры Т, собранного на трех ТТЛ инверторах цифровой интегрально микросхемы К155ЛН1 и трех конденсаторах К10-23 емкостью С=2,2 нФ каждый с группой температурной стабильности M1500.

Для конкретного устройства ТКЕ определяется экспериментально путем нагрева конденсатора в термокамере и измеряя при этом приращение емкости.

Использование конденсаторов с конденсаторной керамикой позволяет регулировать задатчиком уставку температуры в широком диапазоне и позволяет получить заявленный технический результат. Чувствительность по частоте, определенная по графику на фиг. 2, при этом составляет более 3000 Гц/К, что больше в 3 раза, чем у аналога (1000 Гц/К).

В предложенном сигнализаторе температуры изменение частоты кольцевого генератора при изменении температуры конденсаторов, расположенных на поверхности или внутри объекта нагрева, преобразуется преобразователем частота-напряжение в изменение постоянного напряжения, которое подается на первый вход компаратора. На второй вход компаратора подается напряжение с опорного источника питания, который выполняет функцию задатчика температуры срабатывания. При достижении напряжения на первом входе компаратора заданного значения на втором входе, происходит срабатывание компаратора и регистрация сигнала срабатывания.

На фиг. 1 приведена схема кольцевого генератора на инверторах цифровых интегральных микросхем с конденсаторами С в качестве температурочувствительных элементов.

На фиг. 2 приведена экспериментальная зависимость частоты F кольцевого генератора от температуры Т, собранного на трех ТТЛ инверторах цифровой интегрально микросхемы К155ЛН1 и трех конденсаторах К10-23 емкостью С=2,2 нФ каждый с группой температурной стабильности M1500.

На фиг. 3 приведена структурная схема сигнализатора температуры.

Сигнализатор температуры содержит керамические конденсаторы 1, расположенные на объекте, температура которого подлежит регулированию, кольцевой генератор 2, преобразователь частота-напряжение 3, источник опорного напряжения 4, компаратор 5, регистратор 6.

Рассмотрим работу сигнализатора температуры при синфазном изменении температуры объекта и частоты сигнала кольцевого генератора, как показано на фиг. 2. Сигнализатор температуры работает следующим образом. Выбирают конденсаторы 1 с группой температурной стабильности М. Конденсаторы 1 подключают к выходу каждого инвертора кольцевого генератора 2 (см. фиг. 3). Устанавливают источником опорного напряжения 4, выход которого соединен со вторым входом компаратора 5, величину напряжения, пропорционально заданной уставки температуры. С увеличением температуры объекта уменьшается емкость керамических конденсаторов 1. Уменьшение емкости приводит к увеличению частоты сигнала кольцевого генератора 2. Сигнал кольцевого генератора 2 поступает на вход преобразователя частота-напряжение 3, выход которого соединен с первым входом компаратора 5. Компаратор 5 имеет два устойчивых противоположных состояния на выходе - высокое и низкое. Напряжения и их полярность, соответствующие этим состояниям, выбираются исходя из практических соображений. Напряжение на выходе преобразователя частота-напряжение 3 увеличивается. При достижении напряжения на выходе преобразователя 3 величины уставки источника опорного напряжения 4, компаратор 5 срабатывает и его электрическое состояние на выходе изменяется на противоположное. Регистратор 6 фиксирует срабатывание компаратора и в зависимости от предусмотренной программы работы объекта, выдает соответствующие команды.

Сигнализатор температуры, содержащий генератор прямоугольных импульсов, конденсатор, и выход генератора прямоугольных импульсов с одной стороны соединен с конденсатором, задатчик температуры срабатывания, преобразователь частота-напряжение и регистратор, отличающийся тем, что в него дополнительно введен компаратор так, что выход генератора прямоугольных импульсов соединен с другой стороны со входом преобразователя частота-напряжение, выход которого соединен с первым входом компаратора, а второй вход компаратора соединен с выходом задатчика температуры срабатывания и выход компаратора соединен со входом регистратора, при этом генератор прямоугольных импульсов состоит из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по кольцевой схеме, и количество конденсаторов равно количеству инверторов, а выход каждого инвертора соединен с одним из конденсаторов, и выходом генератора прямоугольных импульсов является выход любого выбранного инвертора.
СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ
СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ
СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ
СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ
Источник поступления информации: Роспатент

Showing 11-20 of 216 items.
26.08.2017
№217.015.d7f9

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622532
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d800

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622546
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d817

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622545
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d81d

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622538
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d81f

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия, при этом сначала наносят нижний слой из нитрида ниобия, затем верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622529
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d832

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу получения многослойного покрытия для режущего инструмента. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 83,15-87,35, цирконий 12,0-16,0, кремний...
Тип: Изобретение
Номер охранного документа: 0002622541
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d83a

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622540
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d849

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622528
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d84e

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622539
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d87f

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу нанесения износостойкого покрытия на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622527
Дата охранного документа: 16.06.2017
Showing 11-20 of 38 items.
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3636

Рециркуляционный способ измерения времени задержки распространения сигнала цифровых интегральных микросхем

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем. Формируют стартовый и стоповый импульсы заданной длительности и с заданной длительностью интервала между ними, превышающей длительность...
Тип: Изобретение
Номер охранного документа: 0002545362
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.60c5

Способ измерения теплового импеданса светодиодов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов. Способ состоит в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной...
Тип: Изобретение
Номер охранного документа: 0002556315
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60f9

Термостатирующее устройство

Изобретение относится к термостатам. Техническим результатом является повышение однородности температурного поля. Для этого в известное термостатирующее устройство введены дополнительные нагревательный элемент, электронный ключ, соединенные в последовательную цепь и подключенные к зажимам сети,...
Тип: Изобретение
Номер охранного документа: 0002556367
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7441

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый...
Тип: Изобретение
Номер охранного документа: 0002561336
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7442

Способ измерения теплового сопротивления кмоп цифровых интегральных микросхем

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего...
Тип: Изобретение
Номер охранного документа: 0002561337
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.85d0

Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и...
Тип: Изобретение
Номер охранного документа: 0002565859
Дата охранного документа: 20.10.2015
20.01.2016
№216.013.a0c0

Способ измерения теплового сопротивления переход-корпус мощных мдп-транзисторов

Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества. Способ заключается в том, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего...
Тип: Изобретение
Номер охранного документа: 0002572794
Дата охранного документа: 20.01.2016
25.08.2017
№217.015.992e

Способ измерения переходной тепловой характеристики светоизлучающего диода

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с...
Тип: Изобретение
Номер охранного документа: 0002609815
Дата охранного документа: 06.02.2017
+ добавить свой РИД