×
12.10.2019
219.017.d4d9

Результат интеллектуальной деятельности: УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники, а также измерительной техники, и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в повышении диапазона регулировочных характеристик. Универсальный активный RC-фильтр на основе мультидифференциальных операционных усилителей, имеющих по два входных порта, содержащий конденсаторы, резисторы и повторитель напряжения, соединенные между собой таким образом, что в фильтре обеспечивается получение на выходах полного комплекта амплитудно-частотных характеристик (АЧХ), ФНЧ, ФВЧ, ПФ, РФ характеристик, а также независимая регулировка добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными. 10 з.п. ф-лы, 17 ил., 1 табл.

Изобретение относится к области радиотехники, а также измерительной техники, и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Универсальные активные RC-фильтры (ARCФ), обеспечивающие на разных выходах формирование амплитудно-частотных характеристик фильтра нижних частот (ФНЧ), фильтра высоких частот (ФВЧ), полосового фильтра (ПФ), режекторного фильтра (РФ), широко используются в современной электронике [1-6] и оказывают существенное влияние на качественные показатели многих аналого-цифровых систем связи и автоматического управления.

Достаточно важным направлением совершенствования ARCФ является подстройка и перестройка их основных параметров, в т.ч. за счет цифровой коммутации пассивных элементов и применения микросхем цифровых потенциометров [7-13].

Один из векторов развития современной теории активных RC-фильтров связан с их построением на новой электронной компонентной базе, в т.ч. на основе так называемых мультидифференциальных операционных усилителей (МОУ), обеспечивающих новые качества устройств частотной селекции [14-47].

Предполагаемое изобретение относится одновременно к трем вышеперечисленным классам активных RC-фильтров.

Ближайшим прототипом заявляемого устройства является схема универсального ARC-фильтра (ПФ, ФНЧ, ФВЧ) на основе МОУ, опубликованная в статье Bhopendra Singh, Abdhesh Kumar Singh, Raj Senani. A new universal biquad filter using differential difference amplifiers and its practical realization, Analog Integr. Circ. Sig Process (2013) 75:293–297, pp.293-297. Он содержит (фиг. 1) первый 1, второй 2, третий 3, четвёртый 4 входы, первый 5 выход устройства, первый 6 и второй 7 мультидифференциальные операционные усилители (МОУ), каждый из которых содержит инвертирующий и неинвертирующий входы первого входного порта, а также инвертирующий и неинвертирующий входы второго входного порта, первый 8 конденсатор, включённый между вторым 2 входом устройства и выходом 5 устройства, второй 9 конденсатор, первый 10 резистор, включённый между выходом первого 6 МОУ и первым 5 выходом устройства, второй 11 резистор, третий 12 резистор, связанный одним выводом с общей шиной источников питания.

Основной существенный недостаток известного устройства фиг. 1 состоит в том, что он не позволяет реализовать полный комплект ARC-фильтров с улучшенными регулировочными характеристиками. Так, в ARCФ-прототипе при регулировке добротности полюса АЧХ изменяется его коэффициент передачи и частота полюса.

Основная задача предполагаемого изобретения состоит в расширении функциональных возможностей универсального ARC-фильтра (получении на его выходах полного комплекта АЧХ фильтров ФНЧ, ФВЧ, ПФ, РФ). Дополнительная задача предполагаемого изобретения – обеспечение независимой регулировки добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными. Это существенно упрощает процесс подстройки и регулировки устройств частотной селекции на основе предлагаемого схемотехнического решения ARCФ.

Поставленные задачи достигаются тем, что в универсальном активном RC-фильтре на основе мультидифференциальных операционных усилителей фиг. 1, содержащем первый 1, второй 2, третий 3, четвёртый 4 входы, первый 5 выход устройства, первый 6 и второй 7 мультидифференциальные операционные усилители (МОУ), каждый из которых содержит инвертирующий и неинвертирующий входы первого входного порта, а также инвертирующий и неинвертирующий входы второго входного порта, первый 8 конденсатор, включённый между вторым 2 входом устройства и выходом 5 устройства, второй 9 конденсатор, первый 10 резистор, включённый между выходом первого 6 МОУ и первым 5 выходом устройства, второй 11 резистор, третий 12 резистор, связанный одним выводом с общей шиной источников питания, предусмотрены новые элементы и связи – в схему введён дополнительный МОУ 13, содержащий первый и второй входные порты с инвертирующим и неинвертирущим входами, а также четвёртый 14 резистор и дополнительный повторитель напряжения 15, причём выход первого 6 МОУ соединен с инвертирующим входом его первого входного порта, выход второго 7 МОУ соединён с инвертирующим входом его первого входного порта, первый 1 вход устройства соединён с неинвертирующим входом второго входного порта первого 6 МОУ, первый 5 выход устройства соединен с неинвертирующим входом первого входного порта первого 6 МОУ и неинвертирующим входом второго входного порта второго 7 МОУ, инвертирующий вход второго входного порта первого 6 МОУ соединён с неинвертирущим входом первого входного порта второго 7 МОУ, причём выход дополнительного 13 МОУ соединён с инвертирующим входом второго входного порта второго 7 МОУ, между третьим 3 входом устройства и выходом дополнительного 13 МОУ включены последовательно соединенные пятый 16 и шестой 17 резисторы, общий узел которых соединен с инвертирующим входом первого входного порта дополнительного 13 МОУ, инвертирующий вход второго входного порта дополнительного 13 МОУ соединён с пятым 18 входом устройства, неинвертирующий вход первого входного порта дополнительного 13 МОУ связан с шестым 19 входом устройства, между четвёртым 4 входом устройства и выходом второго 7 МОУ включены последовательно соединённые второй 9 конденсатор и второй 11 резистор, общий узел которых подключён к неинвертирующему входу первого входного порта второго 7 МОУ и соединён со входом дополнительного повторителя напряжения 15, выход дополнительного повторителя напряжения 15 соединен с общей шиной источников питания через последовательно соединенные четвёртый 14 резистор и третий 12 резистор, общий узел которых подключён к неинвертирущему входу второго входного порта дополнительного 13 МОУ.

На чертеже фиг. 1 показана схема фильтра-прототипа, а на чертеже фиг. 2 – схема заявляемого активного устройства в соответствии с п. 1, п.2, п.3, п.4 формулы изобретения.

На чертеже фиг. 3 приведена функциональная схема заявляемого ARC-фильтра со всеми возможными вариантами входов и выходов.

На чертеже фиг. 4а представлена схема заявляемого устройства в соответствии с п. 5 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФВЧ(-)+ПФ(-), ФНЧ(+), ФНЧ), а на чертеже фиг. 4б - амплитудно-частотные характеристики активных RC-фильтров ФВЧ(-)+ПФ(-), ФНЧ(+), ФНЧ), реализуемых в схеме фиг. 4а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 5а показана схема заявляемого устройства в соответствии с п. 6 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФВЧ(-)+ПФ(-), ПФ, ПФ(+)), а на чертеже фиг. 5б - амплитудно-частотные характеристики активных RC-фильтров (ФВЧ(-)+ПФ(-), ПФ, ПФ(+)), реализуемых в схеме фиг. 5а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 6а приведена схема заявляемого устройства в соответствии с п. 7 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФНЧ(+), ПФ, РФ(+)), а на чертеже фиг. 6б - амплитудно-частотные характеристики активных RC-фильтров (ФНЧ(+), ПФ, РФ(+)), реализуемых в схеме фиг. 6а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 7а представлена схема заявляемого устройства в соответствии с п. 8 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ПФ, ФВЧ(+), ФВЧ), а на чертеже фиг. 7б - амплитудно-частотные характеристики активных RC-фильтров (ПФ, ФВЧ(+), ФВЧ), реализуемых в схеме фиг. 7а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 8а показана схема заявляемого устройства в соответствии с п. 9 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФНЧ(+), ПФ, РФ(+)), а на чертеже фиг. 8б - амплитудно-частотные характеристики активных RC-фильтров (ФНЧ(+), ПФ, РФ(+)), реализуемых в схеме фиг. 8а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 9а приведена схема заявляемого устройства в соответствии с п. 10 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФНЧ(+), ПФ, РФ(+)), а на чертеже фиг. 9б - амплитудно-частотные характеристики активных RC-фильтров (ФНЧ(+), ПФ, РФ(+)), реализуемых в схеме фиг. 9а для выходов 1, 2(4) и 3 соответственно.

На чертеже фиг. 10а представлена схема заявляемого устройства в соответствии с п. 11 формулы изобретения (реализуемые АЧХ на выходах 1, 2(4) и 3: ФНЧ, РФ(+), РФ), а на чертеже фиг. 10б - амплитудно-частотные характеристики активных RC-фильтров (ФНЧ, РФ(+), РФ), реализуемых в схеме фиг. 10а для выходов 1, 2(4) и 3 соответственно.

Названные выше амплитудно-частотные характеристики частных вариантов построения заявляемого устройства получены в результате компьютерного моделирования соответствующих частных схем ARCФ в среде MicroCap на моделях мультидифференциальных операционных усилителей AD830 фирмы Analog Devices (США).

Универсальный активный RC-фильтр на основе мультидифференциальных операционных усилителей фиг. 2 содержит первый 1, второй 2, третий 3, четвёртый 4 входы, первый 5 выход устройства, первый 6 и второй 7 мультидифференциальные операционные усилители (МОУ), каждый из которых содержит инвертирующий и неинвертирующий входы первого входного порта, а также инвертирующий и неинвертирующий входы второго входного порта, первый 8 конденсатор, включённый между вторым 2 входом устройства и выходом 5 устройства, второй 9 конденсатор, первый 10 резистор, включённый между выходом первого 6 МОУ и первым 5 выходом устройства, второй 11 резистор, третий 12 резистор, связанный одним выводом с общей шиной источников питания. В схему введён дополнительный МОУ 13, содержащий первый и второй входные порты с инвертирующим и неинвертирущим входами, а также четвёртый 14 резистор и дополнительный повторитель напряжения 15, причём выход первого 6 МОУ соединен с инвертирующим входом его первого входного порта, выход второго 7 МОУ соединён с инвертирующим входом его первого входного порта, первый 1 вход устройства соединён с неинвертирующим входом второго входного порта первого 6 МОУ, первый 5 выход устройства соединен с неинвертирующим входом первого входного порта первого 6 МОУ и неинвертирующим входом второго входного порта второго 7 МОУ, инвертирующий вход второго входного порта первого 6 МОУ соединён с неинвертирущим входом первого входного порта второго 7 МОУ, причём выход дополнительного 13 МОУ соединён с инвертирующим входом второго входного порта второго 7 МОУ, между третьим 3 входом устройства и выходом дополнительного 13 МОУ включены последовательно соединенные пятый 16 и шестой 17 резисторы, общий узел которых соединен с инвертирующим входом первого входного порта дополнительного 13 МОУ, инвертирующий вход второго входного порта дополнительного 13 МОУ соединён с пятым 18 входом устройства, неинвертирующий вход первого входного порта дополнительного 13 МОУ связан с шестым 19 входом устройства, между четвёртым 4 входом устройства и выходом второго 7 МОУ включены последовательно соединённые второй 9 конденсатор и второй 11 резистор, общий узел которых подключён к неинвертирующему входу первого входного порта второго 7 МОУ и соединён со входом дополнительного повторителя напряжения 15, выход дополнительного повторителя напряжения 15 соединен с общей шиной источников питания через последовательно соединенные четвёртый 14 резистор и третий 12 резистор, общий узел которых подключён к неинвертирущему входу второго входного порта дополнительного 13 МОУ.

На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, предусмотрен второй 20 выход устройства, соединённый со входом дополнительного повторителя напряжения 15.

На чертеже фиг. 2, в соответствии с п. 3 формулы изобретения, предусмотрен третий 21 выход устройства, соединенный с выходом дополнительного 13 МОУ.

На чертеже фиг. 2, в соответствии с п. 4 формулы изобретения, предусмотрен четвертый 22 выход устройства, соединённый с выходом дополнительного повторителя напряжения 15.

На чертеже фиг. 4, в соответствии с п. 5 формулы изобретения, источник входного сигнала связан с первым 1 входом устройства, а второй 2, третий 3, четвертый 4, пятый 18, шестой 19 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 5, в соответствии с п. 6 формулы изобретения, источник входного сигнала связан с вторым 2 входом устройства, а первый 1, третий 3, четвертый 4, пятый 18, шестой 19 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 6, в соответствии с п. 7 формулы изобретения, источник входного сигнала связан с третьим 3 входом устройства, а первый 1, второй 2, четвертый 4, пятый 18, шестой 19 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 7, в соответствии с п. 8 формулы изобретения, источник входного сигнала связан с четвертым 4 входом устройства, а первый 1, второй 2, третий 3, пятый 18, шестой 19 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 8, в соответствии с п. 9 формулы изобретения, источник входного сигнала связан с пятым 18 входом устройства, а первый 1, второй 2, третий 3, четвертый 4, шестой 19 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 9, в соответствии с п. 10 формулы изобретения, источник входного сигнала связан с шестым 19 входом устройства, а первый 1, второй 2, третий 3, четвертый 4, пятый 18 входы устройства подключены к общей шине источников питания.

На чертеже фиг. 10, в соответствии с п. 11 формулы изобретения, источник входного сигнала связан с первым 1 и четвертым 4 входами устройства, а второй 2, третий 3, пятый 18, шестой 19 входы устройства подключены к общей шине источников питания.

Рассмотрим работу схемы фиг. 2.

Обобщенная передаточная функция всех типов активных RC-фильтров (ФНЧ, ФВЧ, ПФ, РФ), реализуемых на основе схемы фиг. 2, имеет вид

, (1)

где ai, bj –коэффициенты числителя и знаменателя формулы (1), зависящие от параметров элементов и используемых входов и выходов в схеме фиг. 2.

Конкретный набор коэффициентов ai, bj определяет тип ARC-фильтра (ФНЧ, ФВЧ, ПФ, РФ).

Коэффициенты ai числителей передаточных функций (1) реализуемых фильтров приведены в таблице 1.

Таблица 1 - Коэффициенты ai числителей передаточных функций (1) реализуемых на базе схемы фиг. 2 фильтров (ФНЧ, ФВЧ, ПФ, РФ)

ВЫХОДЫ
1
(п.1 формулы изобретения)
2 (4)
(п. 2 и п. 4 формулы изобретения)
3
(п. 3 формулы изобретения)
ВХОДЫ 1
(п. 5 формулы изобретения, графики АЧХ фиг. 4б)
ФВЧ(-)+ПФ(-)


ФНЧ(+)

ФНЧ

2
(п. 6 формулы изобретения, графики АЧХ фиг. 5б)
ФВЧ(-)+ПФ(-)


ПФ

ПФ(+)

3
(п. 7 формулы изобретения, графики АЧХ фиг. 6б)
ФНЧ(+)

ПФ

РФ(+)


4
(п. 8 формулы изобретения, графики АЧХ фиг. 7б)
ПФ

ФВЧ(+)

ФВЧ

5
(п. 9 формулы изобретения, графики АЧХ фиг. 8б)
ФНЧ(+)

ПФ

РФ(+)


6
(п. 10 формулы изобретения, графики АЧХ фиг. 9б)
ФНЧ(+)

ПФ

РФ(+)


1+4
(п. 11 формулы изобретения, графики АЧХ фиг. 10б)
ФНЧ

РФ(+)


РФ


Коэффициенты знаменателей bj передаточных функций (1) реализуемых фильтров ФНЧ, ФВЧ, ПФ, РФ связаны с элементами схемы фиг. 2 следующими формулами

, , . (2)

При этом в формулах (1), (2) приняты следующие обозначения

,

,

, (3)

,

,

где Rij – сопротивления ij-го резистора, C8, C9 – емкости первого 8 и второго 9 конденсаторов.

Aктивные RC-фильтры, представленные в таблице 1 и обозначенные как ФНЧ, ФВЧ, ПФ, РФ, не обладают свойствами независимой регулировки добротности полюса, коэффициента передачи и частоты полюса. Здесь при изменении добротности полюса коэффициенты передачи и частоты полюса могут изменяться.

Aктивные RC-фильтры в таблице 1, обозначенные как ФНЧ(+), ФВЧ(+), ПФ(+), РФ(+), обладают свойствами независимой регулировки добротности полюса, коэффициента передачи и частоты полюса. Здесь регулировка добротности полюса не изменяет коэффициент передачи фильтра и частоту его полюса. Эти фильтры представляют наибольший практический интерес.

Aктивные RC-фильтры в таблице 1, обозначенные как ФНЧ(-), ФВЧ(-), ПФ(-), РФ(-), имеют наклон амплитудно-частотной характеристики, соответствующей передаточной функции первого порядка.

Результаты компьютерного моделирования предлагаемого универсального ARC фильтра, соответствующего формуле изобретения, приведены на чертежах фиг. 4б, фиг. 5б, фиг. 6б, фиг. 7б, фиг. 8б, фиг. 9б, фиг. 10б.

Анализ графиков АЧХ фиг. 4б показывает, что в реализуемом для выхода 2(4) ФНЧ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Графики АЧХ фиг. 5б показывают, что в реализуемом для выхода 3 ПФ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Анализ графиков АЧХ фиг. 6б показывает, что в реализуемом для выходов 1 и 3 ФНЧ(+) и РФ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Из графиков АЧХ фиг. 7б следует, что в реализуемом для выхода 2(4) ФВЧ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Анализ графиков АЧХ фиг. 8б показывает, что в реализуемом для выходов 1 и 3 ФНЧ(+) и РФ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Графики АЧХ фиг. 9б показывают, что в реализуемом для выходов 1 и 3 ФНЧ(+) и РФ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Из графиков АЧХ фиг. 10б следует, что в реализуемом для выхода 2(4) РФ(+) при регулировке добротности полюса коэффициент передачи и частота полюса не изменяются.

Таким образом, в соответствии с результатами теоретического анализа и компьютерного моделирования, в заявляемом устройстве реализуется широкий спектр амплитудно-частотных характеристик фильтров второго и первого порядка (ФНЧ, ФВЧ, ПФ, РФ). При этом в ряде случаев за счет новых связей при регулировке добротности полюса коэффициент передачи и частота полюса ARCФ не изменяются. Это является существенным преимуществом предлагаемого схемотехнического решения в сравнении с известными ARC-фильтрами данного класса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент SU 1777233, 1990 г.

2. Патент SU 1755365, 1990 г.

3. Патент SU 1788570, 1993 г.

4. Патент RU 2019023, 1980 г.

5. Патент RU 2089998, 1992 г.

6. Патент SU 2089041, 1990 г.

7. Патент US 7.737.772, 2010 г.

8. Патент SU 587602, 1978 г.

9. Патент SU 536590, 1976 г.

10. Патент SU 1363443, 1987 г.

11. C.-M. Chang, "Analytical synthesis of the digitally programmable voltage-mode OTA-C universal biquad," IEEE Transactions on Circuits and Systems-II, vol. 53, pp. 607-611, 2006. DOI: 10.1109/TCSII.2006.876411

12. M. Kumngern, B. Knobnob, K. Dejhan, "Electronically tunable high-input impedance voltage-mode universal biquadratic filter based on simple CMOS OTAs," International Journal of Electronics and Communications, vol. 64, pp. 934-939, 2010.

13. M. Kumngern, U. Torteanchai and K. Dejhan, "Electronically tunable multiple-input single-output voltage-mode multifunction filter employing simple CMOS OTAs," in Proceeding of 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2010), Kuala Lumpur, Malaysia, December 6-9, 2010, pp. 1099-1102. DOI: 10.1109/APCCAS.2010.5774819

14. Патент EP 0 829 955 B1, 2002 г.

15. Патент US 5.117.199, 1992 г.

16. Патент US 9.762.125, 2017 г.

17. Патент KR20020068968A, 2002 г.

18. Патент KR20100093878A, 2012 г.

19. Патент US 8.390.374, 2013 г.

20. Патент RU 2506694, 2014 г.

21. Патент RU 2541723, 2015 г.

22. D. Arbet, G. Nagy, M. Kovác and V. Stopjaková, "Fully Differential Difference Amplifier for Low-Noise Applications," 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, Belgrade, 2015, pp. 57-62. DOI: 10.1109/DDECS.2015.38

23. Z. Czarnul, "A new compensated integrator structure with differential difference amplifier and its application to high frequency MOSFET-C filter design", Circuit Theory and Design 1989. European Conference on, pp. 132-136, Sep 1989.

24. S.-C. Huang, M. Ismail, "Novel full-integrated active filters using the CMOS differential difference amplifier", Circuits and Systems 1989. Proceedings of the 32nd Midwest Symposium on, vol. 1, pp. 173-176, Aug 1989. DOI: 10.1109/MWSCAS.1989.101822

25. Manish Kumar. Realization of some novel active circuits. Chapter 3. Fully differential difference amplifier (FDDA) based active filter, pp. 56-71, fig. 3.5, fig. 3.6, fig. 3.8, fig. 3.10

http://shodhganga.inflibnet.ac.in/bitstream/10603/5652/8/08_chapter%203.pdf

26. Li-Shin Lai, Hsieh-Hung Hsieh, Po-Shuan Weng, and Liang-Hung Lu, “An Experimental Ultra-Low-Voltage Demodulator in 0.18-m CMOS”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Vol. 57, No. 10, October 2009, pp. 2307-2317. DOI: 10.1109/TMTT.2009.2029023

27. “Wireless Communications Circuits and Systems” edited by Yichuang Sun, IET Circuits, Devices and Systems, Series 16, 2004, 350 p., fig. 3.6 URL: https://flylib.com/books/en/3.253.1.22/1/

28. Quan Hu, Lijuan Yang, Fengyi Huang, “A 100–170MHz fully-differential Sallen-Key 6th-order low-pass filter for wideband wireless communication’, 2016 International Conference on Integrated Circuits and Microsystems (ICICM), 23-25 Nov. 2016, Chengdu, China, fig. 4 DOI: 10.1109/ICAM.2016.7813617

29. Gano, Antonio J., Especial Nuno F. “Biquadratic Resonant Filter based on a Fully Differential Multiple Differences Amplifier.” (2001). https://docplayer.net/53743008-Biquadratic-resonant-filter-based-on-a-fully-differential-multiple-differences-amplifier.html

30. Hussain Alzaher and Mohammed Ismail, “A CMOS Fully Balanced Differential Difference Amplifier and Its Applications”, IEEE Transactions on circuits and systems—II: Analog and digital signal processing, VOL. 48, NO. 6, JUNE 2001, pp.614-620., fig. 8

31. Shu-Chuan Huang, Mohammed Ismail, and Seyed R. Zarabadi, “A Wide Range Differential Difference Amplifier: A Basic Block for Analog Signal Processing in MOS Technology”, IEEE Transactions On Circuits And Systems-11: Analog And Digital Signal Processing, VOL. 40, NO. 5, MAY 1993, pp.289-301, fig. 28, fig. 29, fig. 30

32. Montree Kumngern, Fabian Khateb, “0.8-V Floating-Gate Differential Difference Current Feedback Operational Amplifier”, 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 14-17 May 2014, pp. 1-5, fig. 4, fig.5, fig. 10

33. Montree Kumngern, Komsan Klangthan, “0.5-V Fourth-Order Low-Pass Filter”, 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), October 23, 2017, Jakarta, Indonesia, pp.119-122, fig. 1, fig. 2, fig. 3, fig. 4

34. Bhopendra Singh, Abdhesh Kumar Singh, Raj Senani, “A new universal biquad filter using differential difference amplifiers and its practical realization”, Analog Integr. Circ. Sig Process (2013) 75:293–297, pp.293-297, fig.1, fig. 2, fig. 3 DOI: 10.1007/s10470-013-0048-4

35. Chien-Han Wu, Hsieh-Hung Hsieh, Po-Chih Ku, and Liang-Hung Lu, “A Differential Sallen-Key Low-Pass Filter in Amorphous-Silicon Technology”, Journal Of Display Technology, Vol. 6, No. 6, June 2010, pp.207-214

36. Debashis Jana, Ashis Kumar Mal, “Design of Low Noise Amplifier for Sensor Applications”, 2017 Devices for Integrated Circuit (DevIC), 23-24 March 2017, pp. 451-455, fig. 3, fig.7

37. Jingyu Wang, Zhangming Zhu, Shubin Liu, Ruixue Ding, “A low-noise programmable gain amplifier with fully balanced differential difference amplifier and class-AB output stage”, Microelectronics Journal, 64 (2017), pp. 86–91, fig. 1, fig. 4

38. Soliman A. Mahmoud and Ahmed M. Soliman, “The Differential Difference Operational Floating Amplifier: A New Block for Analog Signal Processing in MOS Technology”, IEEE Transactions On Circuits And Systems—Ii: Analog And Digital Signal Processing, Vol. 45, No. 1, January 1998, pp. 148-158, fig. 13.

39. Soliman A. Mahmoud and Ahmed M. Soliman, “The current-feedback differential difference amplifier: new CMOS realization with rail to rail class-AB output stage”, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Vol. 2, pp. 120 – 123, fig.1, fig. 2, fig, 4

40. Shu-Chuan Humg and Mohammed Ismail, “Novel fully-integrated active filters using the CMOS differential difference amplifier”, Proceedings of the 32nd Midwest Symposium on Circuits and Systems, 14-16 Aug. 1989, p.173-176, fig. 13

41. Fabian Khateb, Montree Kumngern, Tomasz Kulej, Vilém Kledrowetz, “Low-voltage fully differential difference transconductance amplifier”, IET Circuits Devices Syst., 2018, Vol. 12 Iss. 1, pp. 73-81, fig. 4, fig. 5 DOI: 10.1049/iet-cds.2017.0057

42. Montree Kumngern, “CMOS Differential Difference Voltage Follower Transconductance Amplifier”, 2015 IEEE International Circuits and Systems Symposium(ICSyS), pp.133-136, fig. 1, fig. 2

43. Serhan Yamacli, Sadri Ozcan, Hakan Kuntman, “Resistorless KHN Biquad Using an DDA (Difference Diffference Amplifier) and Two CCCIIs (Controlled Current Conveyor)”, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005, pp.1-4, fig. 5

44. Krutchinsky S.G., Prokopenko N.N., Zhebrun E.A., Butyrlagin N.V., “The Peculiarities of the Structural Optimization of the Energy-Efficient Precision ARC-Filters on the Base of Classical and Differential Difference Operational Amplifiers”, IEEE East-West Design & Test Symposium (EWDTS’2015), 26–29 Sep. 2015. Batumi, Georgia, fig. 2. DOI: 10.1109/EWDTS.2015.7493136

45. Prokopenko N.N., Butyrlagin N.V., Krutchinsky S.G., Zhebrun E. A., Titov A.E., “The Advanced Circuitry of the Precision Super Capacitances Based on the Classical and Differential Difference Operational Amplifiers”, 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS’2015), 22. - 24. April 2015, Belgrade, Serbia, pp. 111-114, fig. 5. DOI 10.1109/DDECS.2015.46

46. Chunlei Shi, Yue Wu, Hassan 0 Elwan, and Mohammed Ismail, A low-power high-linearity CMOS baseband filter for wideband CDMA applications, ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland, II-152 - II-155

47. Hu, Q., Yang, L., & Huang, F. A 100–170MHz fully-differential Sallen-Key 6th-order low-pass filter for wideband wireless communication. 2016 International Conference on Integrated Circuits and Microsystems (ICICM). doi:10.1109/icam.2016.7813617


УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ
Источник поступления информации: Роспатент

Showing 51-60 of 186 items.
04.04.2018
№218.016.350e

Измерительный мост с повышенным быстродействием

Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение. Технический результат - повышение быстродействия. Измерительный мост с повышенным быстродействием...
Тип: Изобретение
Номер охранного документа: 0002645867
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.36b2

Асинхронный пиковый детектор

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов. Асинхронный пиковый детектор содержит аналоговый вход (1) и аналоговый выход (2), первый (3) прецизионный...
Тип: Изобретение
Номер охранного документа: 0002646371
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4896

Дифференциальный усилитель токов

Изобретение относится к устройствам усиления широкополосных сигналов. Технический результат заключается в повышении коэффициента усиления по току ДУТ при сохранении у него опции rail-to-rail. Дифференциальный усилитель токов содержит первый, второй, третий и четвертый дополнительные...
Тип: Изобретение
Номер охранного документа: 0002651221
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4d3d

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ на основе трех токовых зеркал с микроамперными статическими токами. Технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002652504
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5ba5

Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой»...
Тип: Изобретение
Номер охранного документа: 0002655728
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5d90

Способ гигротермической обработки зерна овса

Способ включает увлажнение зерна влажным насыщенным паром, получаемым внутри камеры путем нагрева воды, находящейся в нижней части камеры до температуры 60-80°С при остаточном давлении в ней 0,03-0,05 МПа. Увлажнение заканчивают при достижении остаточного давления 0,06-0,08 МПа. Способ...
Тип: Изобретение
Номер охранного документа: 0002656344
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f90

Arc-фильтр нижних частот с независимой настройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения. Технический результат: создание схемы ARC-фильтра нижних частот, которая...
Тип: Изобретение
Номер охранного документа: 0002656728
Дата охранного документа: 06.06.2018
25.06.2018
№218.016.667b

Дифференциальный преобразователь "напряжение-ток" с широким диапазоном линейной работы

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения...
Тип: Изобретение
Номер охранного документа: 0002658818
Дата охранного документа: 22.06.2018
03.07.2018
№218.016.6a14

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов. Технический результат: повышение на 1-2 порядка максимальной скорости нарастания выходного напряжения при работе...
Тип: Изобретение
Номер охранного документа: 0002659476
Дата охранного документа: 02.07.2018
Showing 51-60 of 216 items.
20.11.2015
№216.013.8f5c

Дифференциальный усилитель с расширенным частотным диапазоном

Изобретение относится к устройствам усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов). Технический результат заключается в расширении диапазона рабочих частот КУ...
Тип: Изобретение
Номер охранного документа: 0002568316
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f5d

Широкополосная цепь смещения статического уровня в транзисторных каскадах усиления и преобразования сигналов

Изобретение относится к области усилителей аналоговых ВЧ и СВЧ сигналов. Техническим результатом является расширение диапазона рабочих частот цепи смещения статического уровня. Широкополосная цепь смещения статического уровня в транзисторных каскадах усиления и преобразования сигналов содержит...
Тип: Изобретение
Номер охранного документа: 0002568317
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f5e

Мультидифференциальный операционный усилитель с малым напряжением смещения нуля

Изобретение относится к прецизионным устройствам усиления сигналов различных сенсоров. Технический результат заключается в уменьшении абсолютного значения U, а также его температурных и радиационных изменений, обусловленных дрейфом β транзисторов. Мультидифференциальный операционный усилитель с...
Тип: Изобретение
Номер охранного документа: 0002568318
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa0

Прецизионный операционный усилитель на основе радиационно стойкого биполярно-полевого технологического процесса

Изобретение относится к области радиотехники и может быть использовано в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат заключается в уменьшении напряжения смещения нуля для повышения прецизионности операционного усилителя. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002568384
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa1

K-значный логический элемент "максимум"

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в цифровых вычислительных структурах, системах автоматического управления, передачи и обработки цифровой информации. Техническим результатом является повышение быстродействия устройств...
Тип: Изобретение
Номер охранного документа: 0002568385
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.912c

Каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области усилителей аналоговых сигналов. Техническим результатом является повышение значения верхней граничной частоты без ухудшения коэффициента усиления по напряжению в диапазоне средних частот. Каскодный усилитель содержит первый и второй входные транзисторы, первый...
Тип: Изобретение
Номер охранного документа: 0002568780
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9b40

Каскодный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи. Технический результат заключается в расширении диапазона рабочих частот каскодного усилителя без ухудшения коэффициента усиления по напряжению. Устройство содержит входной преобразователь «напряжение-ток», токовый выход которого соединен с...
Тип: Изобретение
Номер охранного документа: 0002571369
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b5e

Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах

Изобретение относится к измерительной технике и может быть использовано в качестве устройства усиления сигналов различных датчиков, в условиях воздействия низких температур и радиации. Технический результат заключается в обеспечении радиационно-стойкого низкотемпературного дифференциального...
Тип: Изобретение
Номер охранного документа: 0002571399
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b5f

Каскодный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов, реализуемых по...
Тип: Изобретение
Номер охранного документа: 0002571400
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b61

Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью

Изобретение относится к области радиотехники и связи и может использоваться в микросхемах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Техническим результатом является повышение добротности резонансной амплитудно-частотной характеристики...
Тип: Изобретение
Номер охранного документа: 0002571402
Дата охранного документа: 20.12.2015
+ добавить свой РИД