×
12.10.2019
219.017.d4a4

СПОСОБ ОЦЕНКИ СТАБИЛЬНОСТИ ЖЕЛЕЗОСОДЕРЖАЩЕЙ ДИСПЕРСИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области определения размера частиц методом динамического светорассеяния в пробах образцов (вещества) каталитических систем синтеза Фишера-Тропша на основе дисперсий металлсодержащих наноразмерных частиц, взвешенных в углеводородной среде, и может быть использовано для контроля стабильности наноразмерных железосодержащих дисперсий. Предложен способ оценки стабильности железосодержащей дисперсии, включающий отбор пробы образца, ее подготовку, определение размера частиц вещества и интерпретацию результатов. По этому способу определяют размер взвешенных в углеводородной среде наноразмерных частиц дисперсий с содержанием железа 1-10 мас.%, отбор пробы образца проводят из верхнего, среднего и нижнего слоев образца, затем осуществляют растворение каждого из образцов в смеси растворителя, выбранного из ряда толуола, ацетона, С-С, нонадекана, гексана, и стабилизирующего агента - поверхностно-активного вещества диоктилсульфосукцината натрия, взятого в количестве 1-5 мас.% по отношению к растворителю, при содержании пробы в смеси растворитель-стабилизирующий агент, равном 0,01-0,1 г, определяют размер частиц пробы вещества методом динамического светорассеяния, после чего осуществляют интерпретацию результатов анализа, оценивая стабильность железосодержащей дисперсии, исходя из соотношения содержания мелких и крупных частиц в каждом слое образца. Когда наблюдается соответствие С : C > C : C > С : С- система бимодальна и нестабильна - склонна к оседанию, в случае выполнения условия С : C = C : C = C : C- система бимодальна и стабильна. Технический результат - возможность экспресс-контроля за состоянием размера дисперсий и своевременного исключения возможного укрупнения частиц свыше 100 нм при наработке и хранении партий каталитических систем, необходимых для проведения синтеза Фишера-Тропша в полупромышленных и промышленных масштабах; возможность оценки стабильности железосодержащей дисперсии, в том числе при необходимости ее длительного хранения. 1 з.п. ф-лы, 9 пр., 1 табл., 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области определения размера частиц пробы образца (вещества) методом динамического светорассеяния взвешенных в углеводородной среде металлсодержащих наноразмерных дисперсий, входящих в состав каталитической системы синтеза Фишера-Тропша, и может быть использовано для контроля состояния взвешенности наноразмерных дисперсий при наработке и хранении укрупненных партий каталитических систем, необходимых для проведения синтеза в полупромышленных и промышленных масштабах.

Известен способ определения размера частиц методом динамического светорассеяния, описанный в ГОСТ Р 8.774- 2011.

В качестве жидкой дисперсионной среды рекомендуется использовать деионизованную воду, соответствующую требованиям ГОСТ 6709. а также органические жидкости, например этанол - ГОСТ 18300 и изопропанол - ГОСТ 9805.

При высокой концентрации испытуемого образца допускается его разбавление до уровня, необходимого для проведения измерений с помощью анализатора размера частиц. Основной параметр, по которому это можно определить - критерий оценки максимального содержания частиц в образце взвеси - отношение значения, при котором автокорреляционная функция интенсивности рассеяния пересекает ось ординат, к его максимальному значению. Это отношение должно быть в диапазоне 0,8-1,0.

Метод динамического светорассеяния базируется на явлении рассеяния луча монохроматического света при прохождении через коллоидный раствор. При этом наблюдаются временные флуктуации интенсивности рассеянного света, которые зависят от микроскопических флуктуаций концентрации частиц в растворе. Теория динамического светорассеяния определяет математическую взаимосвязь между функцией корреляции интенсивности рассеянного света и физико-химическими свойствами дисперсионной среды и размерными параметрами частиц дисперсной фазы. На основании теории разработаны стандартизированные методы гранулометрического анализа, называемые спектроскопией с фотонной корреляцией (ISO 13321:1996; ISO 22412:2017)

Недостаток известного способа заключается в том, что при анализе методом динамического светорассеяния исследуемая проба должна быть проницаема для монохроматического излучения, т.е. с этой целью должна быть проведена подготовка пробы каждого конкретного образца вещества.

Кроме того, известные методики, включая прототип, не позволяют получить стабильные образцы, состоящие из взвешенных металлсодержащих (в частности, железосодержащих) частиц в смеси твердых парафинов С1932. Одной из причин является трудность выбора растворителей. Наиболее предпочтительные растворители для пробоподготовки таких образцов - парафины малой молекулярной массы (пентан, гексан, гептан и проч.) Однако растворимость тяжелых парафинов в легких ограничена - таким образом, необходимо использовать двух- или трехкратный избыток растворителя по отношению к массе исследуемого образца. В результате вязкость дисперсионной среды существенно снижается, что приводит к агломерации частиц дисперсной фазы (металлсодержащего компонента) и дестабилизации системы.

Задача изобретения заключается в разработке способа контроля размеров и стабильности требующих длительного хранения каталитических систем на основе наноразмерных железосодержащих частиц, взвешенных в углеводородной среде, активных в синтезе Фишера-Тропша.

Поставленная задача решается с помощью способа определения размера частиц пробы вещества методом динамического светорассеяния, включающего отбор пробы образца, ее подготовку, анализ размера частиц вещества и интерпретацию результатов анализа, в котором

- исследуют размер взвешенных в углеводородной среде наноразмерных частиц дисперсий с содержанием железа 1-10% масс.

- отбор пробы образца проводят из верхнего, среднего и нижнего слоев образца

- затем осуществляют растворение каждого из образцов в смеси растворителя и стабилизирующего агента, взятого в количестве 1-5% масс, по отношению к растворителю, при содержании пробы в смеси растворитель - стабилизирующий агент, равном 0,01-0,1 г.,

- после чего определяют размер частиц и соотношение содержания мелких и крупных частиц в каждом слое образца.

Причем в качестве растворителя используют соединения, выбранные из ряда толуол, ацетон, С1932, нонадекан, гексан.

Железосодержащая дисперсия дополнительно содержит оксид калия в количестве 0,01-0,2% масс.

Технический результат, который может быть получен от использования предлагаемого изобретения заключается:

- в возможности экспресс - контроля за состоянием размера дисперсий и своевременного исключения возможного укрупнения частиц свыше 100 нм при наработке и хранении партий каталитических систем, необходимых для проведения синтеза Фишера-Тропша в полупромышленных и промышленных масштабах;

- возможность оценки стабильности железосодержащей дисперсии, в том числе при необходимости ее длительного хранения.

Стабильность бимодальной системы оценивают по соотношению концентраций мелких и крупных частиц в каждом из слоев в % интенсивности рассеянного света, где:

С мелких частиц верхнего слоя - содержание мелких частиц в верхнем слое катализатора;

С крупных частиц верхнего слоя - содержание крупных частиц в верхнем слое катализатора;

С мелких частиц среднего слоя - содержание мелких частиц в среднем слое катализатора;

С крупных частиц среднего слоя - содержание крупных частиц в среднем слое катализатора;

С мелких частиц нижнего слоя - содержание мелких частиц в нижнем слое катализатора;

С крупных частиц нижнего слоя - содержание крупных частиц в нижнем слое катализатора;

Когда наблюдается соответствие

С мелких частиц верхнего слоя : C крупных частиц верхнего слоя > C мелких частиц среднего слоя : C крупных частиц среднего слоя > С мелких частиц нижнего слоя : С крупных частиц нижнего слоя

- система бимодальна и нестабильна (склонна к оседанию).

В случае выполнения условия

С мелких частиц верхнего слоя : C крупных частиц верхнего слоя = C мелких частиц среднего слоя : C крупных частиц среднего слоя = C мелких частиц нижнего слоя : C крупных частиц нижнего слоя

- система бимодальна и стабильна.

Размер частиц и соотношение содержания мелких (С мелких частиц верхнего слоя, С мелких частиц среднего слоя, и С мелких частиц нижнего слоя в верхнем, среднем и нижнем слоях, соответственно) и крупных частиц (С крупных частиц верхнего слоя, С крупных частиц среднего слоя, и С крупных частиц нижнего слоя) в каждом слое образца определяют на приборе Malvern Zetasizer Nano ZS методом светорассеяния. Для сравнения экспериментальных данных по размеру частиц исследуемых объектов необходима точность измерения, соответствующая международному стандарту ISO 13321 (1996(1)) [ISO 13321-1996(1) «Particle size analysis - Photon correlation spectroscopy))].

Предварительно готовят раствор с концентрацией стабилизирующего агента - диоктилсульфосукцината натрия (АОТ) 1-5% масс.

Образец дисперсии с концентрацией частиц 1-10% масс, объемом 100 мл предварительно выдерживают в мензурке при температуре 100°С в течение 60 мин. После этого стеклянную пипетку, подсоединенную к шприцу, опускают в мензурку, выпуская из нее воздух. При погружении пипетки на необходимую глубину (10 мм от верхнего слоя, в центр мензурки, либо на расстояние 10 мм ото дна стакана) производят отбор пробы и перенос ее на чашку Петри. Застывший на чашке Петри образец измельчают шпателем и переносят необходимое количество навески в стаканчик для взвешивания

После этого в стаканчик с навеской добавляют 10 мл раствора и производят интенсивное перемешивание стеклянной палочкой в течение 2 мин. С помощью пипетки производят отбор 1,0 мл полученного раствора и загружают в кварцевую кювету PCS8501 для анализа. Кювету помещают в ячейку прибора Malvern Zetasizer Nano и производят измерение.

Измерение каждого образца проводят 3-5 раз с временным промежутком 2,5 мин.

Температуру ячейки для измерения образца выбирают с учетом физико-химических свойств растворителя, значения вязкости и показателя преломления при выбранной температуре используют справочные.

При этом инструментальная ошибка определения размера частиц методом динамического светорассеяния не превышает 2%, согласно спецификации прибора. Общая ошибка измерения размера частиц зависит также от точности подготовки образца и не превышает 5%.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1.

Определяют размер частиц пробы дисперсии с содержанием железа 1% масс, методом динамического светорассеяния, путем отбора пробы образца дисперсии из верхнего., среднего, и нижнего слоев образца дисперсии, последующим растворением каждого из образцов в смеси гексана и стабилизирующего агента, взятого в количестве 5% масс по отношению к растворителю, при содержании пробы в смеси растворитель стабилизирующий агент, равном 0,1.

Определяют размер частиц пробы дисперсии с содержанием железа 10% масс, для образца состава 1%Fе2О3 - 99%C19-C32 методом динамического рассеяния света (далее ДРС), путем отбора пробы образца дисперсии из верхнего, среднего и нижнего слоев образца дисперсии, последующим растворением навески каждого из образцов массой 0,1 г. в смеси гексана и стабилизирующего агента - поверхностно-активного вещества диоктилсульфосукцината натрия (далее АОТ), взятого в количестве 5% масс по отношению к растворителю.

Затем на приборе Malvern Zetasizer Nano ZS методом светорассеяния определяют размер частиц и соотношение содержания мелких в верхнем, среднем и нижнем слоях, соответственно) и крупных частиц в каждом слое образца.

Получены результаты определения размеров частиц:

система состоит из частиц диаметром 3 нм и 300 нм при процентном содержании:

С мелких частиц верхнего слоя = 7%

С крупных частиц верхнего слоя = 93%

С мелких частиц среднего слоя = 7%

C крупных частиц среднего слоя = 93%

С мелких частиц нижнего слоя = 7%

C крупных частиц нижнего слоя = 93%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя = С мелких частиц среднего слоя : С крупных частиц среднего слоя = С мелких частиц нижнего слоя : С крупных частиц нижнего слоя = 0,075, система бимодальная и стабильна.

Пример проиллюстрирован фиг. 1., где представлено распределение частиц по размерам (а) и значения корелляционной функции (б), определенные методом ДРС, полученные при анализе образца состава по примеру 1, для верхнего, среднего и нижнего слоев образца.

Пояснения к Фиг. 1 (а) и Фиг. 1 (б)

1 - распределение частиц по размерам для верхнего слоя образца;

2 - распределение частиц по размерам для среднего слоя образца;

3 - распределение частиц по размерам для нижнего слоя образца;

4 - корреляционная функция для верхнего слоя образца;

5 - корреляционная функция для среднего слоя образца;

6 - корреляционная функция для нижнего слоя образца;

Результаты определения представлены в таблице.

Пример 2.

Определяют размер частиц дисперсии с содержанием железа 10% масс, аналогично примеру 1 для образца состава 10%Fe2O3-90%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,01 г. в смеси гексана и стабилизирующего агента АОТ, взятого в количестве 5% масс, по отношению к растворителю.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 180 нм и 630 нм при процентном содержании:

С мелких частиц верхнего слоя = 20%

C крупных частиц верхнего слоя = 80%

С мелких частиц среднего слоя = 11%

С крупных частиц среднего слоя = 89%

С мелких частиц нижнего слоя = 0%

С крупных частиц нижнего слоя = 100%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя > С мелких частиц среднего слоя : C крупных частиц среднего слоя > C мелких частиц нижнего слоя : C крупных частиц нижнего слоя, система бимодальна и нестабильна (склонна к оседанию).

Пример проиллюстрирован фиг. 2, где представлено распределение частиц по размерам (а) и значения корелляционной функции (б), определенные методом ДРС, полученные при анализе образца состава по примеру 2, для верхнего, среднего и нижнего слоев образца.

Пояснения к Фиг. 2 (а) и Фиг. 2 (б)

1 - распределение частиц по размерам для верхнего слоя образца;

2 - распределение частиц по размерам для среднего слоя образца;

3 - распределение частиц по размерам для нижнего слоя образца;

4 - корреляционная функция для верхнего слоя образца;

5 - корреляционная функция для среднего слоя образца;

6 - корреляционная функция для нижнего слоя образца.

Результаты определения представлены в таблице.

Пример 3

Определяют размер частиц дисперсии с содержанием железа 1% масс, аналогично примеру 1, для образца состава 1%Fe2O3-0,02%K2O-98,98%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,05 г. в смеси гексана и стабилизирующего агента АОТ, взятого в количестве 2,5% масс, по отношению к растворителю.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 4 нм и 250 нм при процентном содержании:

С мелких частиц верхнего слоя = 5%

С крупных частиц верхнего слоя = 95%

С мелких частиц среднего слоя = 5%

С крупных частиц среднего слоя = 95%

С мелких частиц нижнего слоя = 5%

С крупных частиц нижнего слоя = 95%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя = С мелких частиц среднего слоя : C крупных частиц среднего слоя = C мелких частиц нижнего слоя : C крупных частиц нижнего слоя = 0,053, система бимодальная и стабильна.

Результаты определения представлены в таблице.

Пример 4

Определяют размер частиц дисперсии с содержанием железа 1% масс, аналогично примеру 1, для образца состава 1%Fe2O3-0,01%K2O- 98,99%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,03 г. в смеси гексана и стабилизирующего агента АОТ, взятого в количестве 1,25% масс, по отношению к растворителю.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 2 нм и 220 нм при процентном содержании:

С мелких частиц верхнего слоя = 8%

C крупных частиц верхнего слоя = 92%

С мелких частиц среднего слоя = 8%

С крупных частиц среднего слоя = 92%

С мелких частиц нижнего слоя = 8%

C крупных частиц нижнего слоя = 92%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя = С мелких частиц среднего слоя : C крупных частиц среднего слоя = C мелких частиц нижнего слоя : C крупных частиц нижнего слоя = 0,087, система бимодальная и стабильна.

Результаты определения представлены в таблице.

Пример 5 (сравнительный пример)

Определяют размер частиц дисперсии с содержанием железа 1% масс, аналогично примеру 1, но приготавливают пробу из верхнего слоя образца дисперсии путем растворения навески образца массой 0,1 г. в гексане без добавки стабилизирующего агента АОТ.

При пробоподготовке образца без применения АОТ получена нестабильная проба. Первое измерение позволило детектировать частицы диаметром около 110 нм. Через 2,5 мин произошло укрупнение фазы до 270 нм. Следующее измерение через 5 мин показало образование более крупных частиц диаметром 370 нм. Полученное значение максимума корреляционной функции состояло 0,85-0,9. В области больших времен затухания (выше 1000 мкс) детектируется плечо, характерное для бимодальной системы. Таким образом, исследуемый образец состоит из двух фаз частиц, однако такая пробоподготовка не позволяет сформировать систему для корректного анализа.

Пример проиллюстрирован фиг. 3, где представлено распределение частиц по размерам (а) и значения корелляционной функции (б), определенные методом ДРС, полученные при анализе пробы образца состава по примеру 5 через различные промежутки времени. Пояснения к Фиг. 3 (а) и Фиг. 3 (б)

1 - распределение частиц по размерам для верхнего слоя образца, полученное через 0 мин после начала пробоподготовки;

2 - распределение частиц по размерам для верхнего слоя образца, полученное через 2,5 мин после начала пробоподготовки;

3 - распределение частиц по размерам для верхнего слоя образца, полученное через 5 мин после начала пробоподготовки;

4 - корреляционная функция для верхнего слоя образца, полученная через 0 мин после начала пробоподготовки; 5 - корреляционная функция для верхнего слоя образца, полученное через 2,5 мин после начала пробоподготовки;

6 - корреляционная функция для верхнего слоя образца, полученное через 5 мин после начала пробоподготовки.

Результаты определения представлены в таблице.

Пример 6

Определяют размер частиц дисперсии с содержанием железа 5% масс, аналогично примеру 1, для образца состава 5%Fe2O3-95%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,01 г. в смеси растворителя и стабилизирующего агента АОТ, взятого в количестве 5% масс, по отношению к растворителю. В качестве растворителя используют нонадекан.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 53 нм и 190 нм при процентном содержании:

С мелких частиц верхнего слоя = 32%

C крупных частиц верхнего слоя = 68%

С мелких частиц среднего слоя = 21%

С крупных частиц среднего слоя = 79%

С мелких частиц нижнего слоя = 4%

C крупных частиц нижнего слоя = 96%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя > С мелких частиц среднего слоя : C крупных частиц среднего слоя > C мелких частиц нижнего слоя : C крупных частиц нижнего слоя,.система биомодальна и нестабильна(склонна к оседанию).

Результаты определения представлены в таблице.

Пример 7

Определяют размер частиц дисперсии с содержанием железа 5% масс, аналогично примеру 1, для образца состава 5%Fe2O3 - 0,1%К2О - 94,9%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,01 г. в смеси растворителя и стабилизирующего агента АОТ, взятого в количестве 5% масс, по отношению к растворителю. В качестве растворителя используют смесь парафинов C19-C32. Приготовление раствора осуществляют при нагревании до 70°С.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 45 нм и 260 нм при процентном содержании:

С мелких частиц верхнего слоя = 58%

C крупных частиц верхнего слоя = 42%

С мелких частиц среднего слоя = 36%

С крупных частиц среднего слоя = 64%

С мелких частиц нижнего слоя = 17%

C крупных частиц нижнего слоя = 83%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя > С мелких частиц среднего слоя : C крупных частиц среднего слоя > C мелких частиц нижнего слоя : C крупных частиц нижнего слоя, система бимодальна и нестабильна (склонна к оседанию).

Результаты определения представлены в таблице.

Пример 8

Определяют размер частиц дисперсии с содержанием железа 5% масс, аналогично примеру 1, для образца состава 5%Fe2O3 - 0,2%К2О - 94,8%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,01 г. в смеси растворителя и стабилизирующего агента АОТ, взятого в количестве 5% масс, по отношению к растворителю. В качестве растворителя используют толуол.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 37 нм и 145 нм при процентном содержании:

С мелких частиц верхнего слоя = 12%

C крупных частиц верхнего слоя = 82%

С мелких частиц среднего слоя = 9%

С крупных частиц среднего слоя = 91%

С мелких частиц нижнего слоя = 3%

C крупных частиц нижнего слоя = 97%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя > С мелких частиц среднего слоя : C крупных частиц среднего слоя > C мелких частиц нижнего слоя : C крупных частиц нижнего слоя, система бимодальна и нестабильна (склонна к оседанию).

Результаты определения представлены в таблице.

Пример 9

Определяют размер частиц дисперсии с содержанием железа 1% масс, аналогично примеру 1, для образца состава 1%Fe2O3 - 0,2%К2О - 98,8%C19-C32. Приготавливают пробы из верхнего, среднего и нижнего слоев образца дисперсии путем растворения навески каждого из образцов массой 0,01 г. в смеси растворителя и стабилизирующего агента АОТ, взятого в количестве 5% масс, по отношению к растворителю. В качестве растворителя используют ацетон.

Размер частиц и стабильность бимодальной системы оценивают так же, как в примере 1.

Получены результаты определения размеров частиц:

Система состоит из частиц диаметром 3 нм и 284 нм при процентном содержании:

С мелких частиц верхнего слоя = 10%

C крупных частиц верхнего слоя = 90%

С мелких частиц среднего слоя = 10%

С крупных частиц среднего слоя = 90%

С мелких частиц нижнего слоя = 10%

C крупных частиц нижнего слоя = 90%

ПОСКОЛЬКУ С мелких частиц верхнего слоя : С крупных частиц верхнего слоя = С мелких частиц среднего слоя : C крупных частиц среднего слоя = C мелких частиц нижнего слоя : C крупных частиц нижнего слоя, = 0,111, система бимодальная и стабильна.

Результаты определения представлены в таблице.


СПОСОБ ОЦЕНКИ СТАБИЛЬНОСТИ ЖЕЛЕЗОСОДЕРЖАЩЕЙ ДИСПЕРСИИ
СПОСОБ ОЦЕНКИ СТАБИЛЬНОСТИ ЖЕЛЕЗОСОДЕРЖАЩЕЙ ДИСПЕРСИИ
СПОСОБ ОЦЕНКИ СТАБИЛЬНОСТИ ЖЕЛЕЗОСОДЕРЖАЩЕЙ ДИСПЕРСИИ
Источник поступления информации: Роспатент

Showing 51-60 of 141 items.
25.08.2017
№217.015.acd9

Способ получения полимерного гидрогеля

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. Полимерный гидрогель получают...
Тип: Изобретение
Номер охранного документа: 0002612703
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.adf5

Мембранный дистилляционный модуль и способ опреснения минерализованной воды

Изобретение относится к области разделения или концентрирования водных растворов различных веществ, в частности получения пресной воды из солоноватых или морских вод методом мембранной дистилляции, и может быть использовано для создания малогабаритных и малоэнергоемких опреснителей...
Тип: Изобретение
Номер охранного документа: 0002612701
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b5ff

Способ гидроконверсии тяжёлого углеводородного сырья (варианты)

Настоящее изобретение относится к способам переработки углеводородных масел в атмосфере водорода в присутствии дисперсных катализаторов и может быть использовано при переработке тяжелого углеводородного сырья (ТУС) в жидкие углеводородные продукты с более низкой температурой кипения, чем...
Тип: Изобретение
Номер охранного документа: 0002614755
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.be88

Способ получения углеводородов бензинового ряда из попутного нефтяного газа через синтез-газ и оксигенаты

Изобретение относится к способу получения углеводородов бензинового ряда из попутного нефтяного газа, включающему стадию синтеза оксигенатов из синтез-газа, полученного из попутного нефтяного газа, в присутствии металлооксидного катализатора, и стадию синтеза углеводородов из полученных...
Тип: Изобретение
Номер охранного документа: 0002616981
Дата охранного документа: 19.04.2017
26.08.2017
№217.015.e056

Способ получения золькеталя

Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-1,3-диоксан-5-ола - путем взаимодействия глицерина и ацетона на гетерогенном катализаторе, например катионообменных смолах или цеолитах, и может быть использовано при...
Тип: Изобретение
Номер охранного документа: 0002625317
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e08d

Способ получения золькеталя (варианты)

Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-5-гидроксиметил-1,3-диоксолана - путем взаимодействия глицерина и ацетона на кислотном гетерогенном катализаторе, например катионообменной смоле КУ2-8 или цеолите...
Тип: Изобретение
Номер охранного документа: 0002625318
Дата охранного документа: 13.07.2017
29.12.2017
№217.015.f2f6

Электроактивный полимер, электроактивный гибридный наноматериал, гибридный электрод для суперконденсатора и способы их получения

Изобретение относится к области создания электроактивных полимеров - N-замещенных полианилинов (ПАНИ) и гибридных наноматериалов на основе этих полимеров и многостенных углеродных нанотрубок (МУНТ), которые могут быть использованы для получения высокоэффективных электродных материалов для...
Тип: Изобретение
Номер охранного документа: 0002637258
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f30e

Металлополимерный нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo и способ его получения

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров. Металлополимерный нанокомпозитный...
Тип: Изобретение
Номер охранного документа: 0002637333
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f787

Антипротеиназный препарат

Изобретение относится к фармацевтической промышленности и медицине и представляет собой антипротеиназный препарат на основе ингибитора протеиназ белковой природы - овомукоида из белка утиных яиц, хлорида натрия и воды для инъекций, отличающийся тем, что он дополнительно содержит маннитол,...
Тип: Изобретение
Номер охранного документа: 0002639414
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fb29

Катализатор гидропереработки нефтяных фракций (варианты)

Изобретение относится к производству катализаторов для гидропереработки нефтяных фракций, в том числе обессеривания, гидрогенизации и гидродеароматизации. Предложен катализатор гидропереработки нефтяных фракций, полученный in situ путем термического разложения в углеводородном сырье - нефтяных...
Тип: Изобретение
Номер охранного документа: 0002640210
Дата охранного документа: 27.12.2017
Showing 11-11 of 11 items.
20.04.2023
№223.018.4bfe

Способ получения водородсодержащего газа

Изобретение относится к способу получения водородсодержащего газа, включающему две последовательные стадии. Способ характеризуется тем, что на первой стадии при температуре Т=1000-1100°С осуществляет некаталитическую матричную конверсию метана в синтез-газ в присутствии водяного пара, а на...
Тип: Изобретение
Номер охранного документа: 0002769311
Дата охранного документа: 30.03.2022
+ добавить свой РИД