×
09.10.2019
219.017.d36c

Результат интеллектуальной деятельности: Солнечная электростанция (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь к конструкции солнечных электростанций. В солнечной электростанции двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю. ш. до 30° с. ш. в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8–0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах, а расстояние между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением, указанным в формуле изобретения, также определяется по расчетной формуле длина L отражателей солнечной энергии в меридиональном направлении и ширина D в широтном направлении. Во втором варианте в солнечной электростанции двухсторонние солнечные модули установлены на наклонной поверхности в области 30–90° ю. ш. и 30–90° с. ш., наклонённой на юг в северном полушарии и на север в южном полушарии под углом β=ϕ-Δ, где ϕ - широта местности, Δ – отклонение, Δ=0-24°, двухсторонние солнечные модули установлены в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8–0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах. Технический результат заключается в увеличении годового производства электрической энергии. 2 н. и 8 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь, к конструкции солнечных электростанций.

Известна солнечная электростанция, содержащая двухсторонние солнечные фотоэлектрические модули, установленные в несколько рядов на опорах на поверхности земли, под углом к горизонту. Двухсторонние солнечные фотоэлектрические модули состоят из скоммутированных солнечных элементов из кремния с двухсторонней рабочей поверхностью, герметизированных с двух сторон защитным покрытием из стекла и имеют КПД 22% при освещении с фронтальной стороны и 19% при освещении с тыльной стороны. За счет отражения солнечного излучения от земной поверхности производство электрической энергии за год возрастет на 20% по сравнению с модулями с односторонней рабочей поверхностью. (Photon International, 2018, №6, p.2, Almaden Europe Gmbh, www.almaden-europe.eu).

Недостатком известной электростанции является неэффективное использование солнечной энергии тыльной рабочей поверхности двухсторонних солнечных модулей, что приводит к недостаточному увеличению годовой производительности солнечной электростанции.

Задачей настоящего изобретения является повышение эффективности использования солнечной энергии.

Технический результат заключается в увеличении годового производства электрической энергии за счет создания равных условий для использования солнечной энергии фронтальной и тыльной поверхностью двухсторонних солнечных модулей. В результате увеличивается электрическая мощность солнечной электростанции и годовое производство электрической энергии.

Технический результат достигается тем, что в солнечной электростанции, содержащей двухсторонние солнечные модули, установленные в несколько рядов на опорах над поверхностью Земли, согласно изобретению, двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю.ш. до 30° с.ш. в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8-0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах, а расстояние между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением

длина L отражателей солнечной энергии в меридиальном направлении где Н - общая длина одного ряда двухсторонних солнечных модулей, а ширина D в широтном направлении

где n - число рядов двухсторонних солнечных модулей

В варианте конструкции солнечной электростанции двухсторонние модули установлены вертикально.

В другом варианте солнечной электростанции плоскости двухсторонних солнечных модулей в соседних рядах отклонены от вертикальной плоскости в противоположных направлениях на 10-20°.

Еще в одном варианте солнечной электростанции отражатели солнечной энергии выполнены в виде зеркальных отражателей.

В варианте солнечной электростанции отражатели солнечной энергии выполнены в виде диффузных отражателей.

Технический результат достигается также тем, что в солнечной электростанции, содержащей двухсторонние солнечные модули, установленные в несколько рядов на опорах над поверхность Земли, согласно изобретению, двухсторонние солнечные модули установлены на наклонной поверхности в области 30°-90° ю.ш. и 30°-90° с.ш., наклоненной на юг в северном полушарии и на север в южном полушарии под углом β=ϕ-Δ, где ϕ - широта местности, Δ - отклонение, Δ=0-24°, двухсторонние солнечные модули установлены в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8-0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах, а расстояние между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением

длина L отражателей солнечной энергии в меридиональном направлении

где Н - общая длина одного ряда двухсторонних солнечных модулей, а ширина D в широтном направлении

где n - число рядов двухсторонних солнечных модулей.

В варианте конструкции солнечной электростанции двухсторонние модули установлены вертикально.

В другом варианте солнечной электростанции плоскости двухсторонних солнечных модулей в соседних рядах отклонены от вертикальной плоскости в противоположных направлениях на 10-20°.

Еще в одном варианте солнечной электростанции отражатели солнечной энергии выполнены в виде зеркальных отражателей.

В варианте солнечной электростанции отражатели солнечной энергии выполнены в виде диффузных отражателей.

Солнечная электростанция иллюстрируется на фиг. 1, 2, 3, 4, где на фиг. 1 изображена солнечная электростанция на горизонтальной поверхности с вертикальным расположением двухсторонних солнечных модулей (поперечное сечение), на фиг. 2 - солнечная электростанция с отклонением двухсторонних солнечных модулей от вертикального положения, на фиг. 3 - солнечная электростанция (поперечное сечение), вид в плане, на фиг. 4 - солнечная электростанция на южном склоне холма с углом β наклона склона к горизонту.

Солнечная электростанция на фиг. 1 расположена на горизонтальной поверхности 1 в экваториальной зоне от 30° ю.ш. до 30° с.ш. и содержит установленные в несколько рядов вертикально на опорах 2 двухсторонние солнечные модули 3, у которых рабочие поверхности 4 и 5 ориентированы на восток и запад. Плоскости двухсторонних солнечных модулей 3 расположены в меридиональной плоскости 6 Север - Юг. Между рядами двухсторонних солнечных модулей 3 в меридиональной плоскости 6 установлены дополнительные опоры 7, на которых установлены две группы отражателей солнечной энергии 8 и 9 с двухгранным углом γ между ними.

Отражатели солнечной энергии 8 и 9 закреплены по углам 10 на опорах 2 и 7. Расстояние между рядами двухсторонних солнечных модулей 3 и высота h двухсторонних солнечных модулей 3 связаны соотношением ,

В солнечной электростанции на фиг. 2 плоскости двухсторонних солнечных модулей 11 и 12 в соседних рядах отклонены от вертикальной плоскости 13 в противоположные стороны на угол Θ.

На фиг. 3, а также на фиг. 1 и 2, длина отражателей солнечной энергии 8 и 9 в меридиональном направлении 6 превышает длину Н двухсторонних солнечных модулей 3 в меридиональном направлении на С северной 14 и с южной 15 стороны солнечной электростанции расстояние между торцом 16 модуля 3 и краем 17 отражателей солнечной энергии равно Увеличение площади отражателей солнечной энергии с северной и южной стороны солнечной электростанции позволяет отражать солнечную энергию на двухсторонние солнечные модули 3 в течение года от зимнего солнцестояния 22 декабря до летнего солнцестояния 22 июня. На фиг. 1, 2 и 3 отражатели солнечной энергии 8 и 9 размером установлены также с восточной и западной стороны крайних рядов двухсторонних солнечных модулей 3 для обеспечения их двухстороннего освещения солнечным излучением от отражателей солнечной энергии. Таким образом, общая длина L отражателей солнечной энергии 8 и 9 в меридиональном направлении север - юг равна а общая ширина D в широтном направлении восток - запад равна

где n - число рядов двухсторонних солнечных модулей.

На фиг. 4 солнечная электростанция установлена в северном полушарии или южном на южном склоне 18 холма под углом β=ϕ-Δ к горизонтальной поверхности 1, где ϕ - широта местности, Δ - отклонение, Δ=0-24°. Двухсторонние солнечные модули 3 установлены на склоне 18 холма на опорах 2 в меридиональной плоскости 6 в несколько рядов. Дополнительные опоры 7 установлены в меридиональной плоскости 6 на склоне 18 холма между рядами двухсторонних солнечных модулей 3. Отражатели солнечной энергии 8 и 9 установлены на опорах 2 и 7 аналогично фиг. 1, 2 и 3.

Принцип работы солнечной электростанции рассмотрим на примере солнечной электростанции, установленной в пустыне Сахара около города Луксор (Египет). В таблице 1 представлены результаты компьютерного моделирования параметров солнечной электростанции в кВт⋅ч/кВт в зависимости от ориентации солнечных модулей с односторонней или двухсторонней рабочей поверхностью, рассчитанные с учетом метеорологических данных по солнечной радиации в г. Луксор и альбедо пустыни Сахара α=0,3. КПД преобразования солнечной энергии на тыльной поверхности двухстороннего солнечного модуля принимаем равным 0,92 от КПД фронтальной поверхности. Коэффициент отражения (альбедо) отражателей солнечной энергии равен 0,9.

Из таблицы следует, что годовое производство электроэнергии в кВт*ч солнечной электростанцией пиковой мощностью 1 кВт имеет максимальное значение для вертикально ориентированных в меридиональном направлении двухсторонних солнечных модулей с горизонтальными отражателями солнечной энергии.

Экспериментальные исследования показали, что в полдень, когда солнечное излучение находится в меридиональной плоскости и солнечное излучение параллельно плоскости вертикально установленных двухсторонних солнечных модулей, имеет место снижение производства электроэнергии в течение 1-2 часов. Для повышения производства электроэнергии в полдень и выравнивания графика производства электроэнергии согласно фиг. 2 плоскости двухсторонних солнечных модулей отклонены от вертикального положения в соседних рядах в противоположные стороны на 10-20°, что позволяет увеличить производство электроэнергии в период максимального прихода солнечной радиации на поверхность Земли.

Пример выполнения солнечной электростанции. Солнечная электростанция в пустыне Сахара около г. Луксор (Египет) состоит из трех рядов по пять вертикально установленных в меридиональном направлении двухсторонних солнечных модулей 3 общей длиной Н=9 м. Каждый модуль 3 состоит из 60 скоммутированных солнечных элементов с двухсторонней рабочей поверхностью и имеет размеры 0,6 м на 1,6 м. Пиковая мощность двухстороннего солнечного модуля 300 Вт при освещении с рабочей стороны и 276 Вт при освещении с тыльной стороны. Расстояние между рядами двухсторонних солнечных модулей 3 составляет . Между рядами двухсторонних солнечных модулей 3 установлены на дополнительных опорах 7 две группы зеркальных отражателей 8 и 9 с двухгранным углом между ними γ=174°. Размеры зеркальных отражателей 8 и 9 2×1,6 м. Общая длина зеркальных отражателей 8 и 9 составляет L=10 м. Зеркальные отражатели установлены на опорах 7 из труб диаметром 50 мм и закреплены по углам 10 на опорах 2 и 7. С западной и восточной стороны крайних рядов двухсторонних солнечных модулей 3 установлены зеркальные отражатели размером 2 м × 1,6 м общей длиной 10 м. Размеры солнечной электростанции по зеркальным отражателям составляют 10 м × 12 м, пиковая мощность двухсторонних солнечных модулей 4,5 кВт, годовое производство электроэнергии 18000 кВт*ч. Без зеркальных отражателей годовое производство электроэнергии составит 10207 кВт*ч. Таким образом, солнечная электростанция с вертикальными двухсторонними солнечными модулями и отражателями солнечной энергии увеличивает производство электрической энергии в 1,49 раза.

Вертикальное расположение двухсторонних солнечных модулей в меридиональной плоскости увеличивает выработку электроэнергии за счет более эффективного использования поступающей и отраженной солнечной энергии в утренние и вечерние часы и снижения накопления пыли на вертикальных поверхностях двухсторонних солнечных модулей.


Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Солнечная электростанция (варианты)
Источник поступления информации: Роспатент

Showing 51-60 of 65 items.
09.06.2018
№218.016.6052

Резонансный усилитель мощности и способ усиления в нем электрических колебаний

Изобретение относится к электротехнике, в частности, к резонансным преобразователям электрической энергии на основе резонансных усилителей мощности. Техническим результатом является увеличение коэффициента усиления и снижение зависимости параметров преобразователя от величины нагрузки....
Тип: Изобретение
Номер охранного документа: 0002656975
Дата охранного документа: 07.06.2018
27.10.2018
№218.016.975e

Эжекторный газовый теплоэлектрогенератор

Изобретение относится к энергетике, а именно к системам генерации тепла для систем отопления и электроэнергии. В результате применения изобретения происходит прямое использование тепловой энергии продуктов сгорания топлива при одновременном получении тепла и электроэнергии за счет формирования...
Тип: Изобретение
Номер охранного документа: 0002670856
Дата охранного документа: 25.10.2018
28.11.2018
№218.016.a188

Стенд для исследования резонансной системы передачи электрической энергии

Изобретение относится к электротехнике, а именно испытательной технике и электрооборудованию, применяемому при передаче электрической энергии для питания электроустановок потребителей. Стенд для исследования резонансной системы передачи электрической энергии снабжен источником тока повышенной и...
Тип: Изобретение
Номер охранного документа: 0002673427
Дата охранного документа: 26.11.2018
20.03.2019
№219.016.e936

Солнечный концентраторный модуль и способ его изготовления (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным концентраторным модулям для получения электрической и тепловой энергии. В солнечном концентраторном модуле, содержащем оптически прозрачный элемент с разновеликими входной и выходной гранями, отражающие поверхности на боковых гранях...
Тип: Изобретение
Номер охранного документа: 0002445553
Дата охранного документа: 20.03.2012
13.04.2019
№219.017.0c46

Солнечный магнитный двигатель стребкова (варианты)

Изобретение относится к электротехнике, к двигателям постоянного тока с постоянным магнитом, использующим солнечный генератор для питания обмотки ротора. Технический результат заключается в более полном использовании площади солнечных элементов и увеличении их мощности, а также в снижении...
Тип: Изобретение
Номер охранного документа: 0002684638
Дата охранного документа: 11.04.2019
29.06.2019
№219.017.9d33

Способ получения кристаллического кремния высокой чистоты (варианты)

Изобретение может быть использовано для производства кремния полупроводникового качества. Процесс ведут в две стадии в реакторе плазменной печи при температуре выше 1500°С. На первой стадии восстановления в качестве кремнийсодержащего соединения вводят в реактор кварцевую крупку, а в качестве...
Тип: Изобретение
Номер охранного документа: 0002385291
Дата охранного документа: 27.03.2010
29.06.2019
№219.017.9fc8

Солнечный модуль с концентратом (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла. В солнечном модуле с концентратором, отражающая поверхность которого симметрична относительно плоскости симметрии, проходящей через центр приемника...
Тип: Изобретение
Номер охранного документа: 0002456515
Дата охранного документа: 20.07.2012
11.07.2019
№219.017.b2b6

Солнечный дом

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты. В солнечном доме, содержащем ограждающие конструкции стен и крышу со встроенными солнечными модулями...
Тип: Изобретение
Номер охранного документа: 0002694066
Дата охранного документа: 09.07.2019
02.10.2019
№219.017.ce30

Солнечный модуль с концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. Технический результат состоит в повышении удельной мощности приемника за счет отсутствия потерь энергии на блокировку и затенение в отклоняющей...
Тип: Изобретение
Номер охранного документа: 0002700655
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.d065

Солнечный магнитный генератор стребкова (варианты)

Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. Технический результат – повышение эффективности работы. В солнечном магнитном генераторе ротор выполнен в виде диска из проводящего материала c контактами на оси и ободе...
Тип: Изобретение
Номер охранного документа: 0002700588
Дата охранного документа: 18.09.2019
+ добавить свой РИД