×
05.10.2019
219.017.d297

Результат интеллектуальной деятельности: УЗЕЛ ГЕРМЕТИЧНОСТИ СОЕДИНЕНИЙ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002702033
Дата охранного документа
03.10.2019
Аннотация: Группа изобретений относится к нефтегазовой промышленности, а именно к оборудованию для добычи углеводородов, и может быть использована в конструкциях насосно-компрессорных труб (НКТ). Узел герметичности соединений НКТ включает стыкуемые друг с другом посредством стягивающей резьбовой муфты концы НКТ, а также герметизирующую прокладку. Конец одной из соединяемых НКТ выполнен в виде стакана, на верхней части внутренней поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой НКТ выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с дном стакана, другой - со стягивающей муфтой. Герметизирующий элемент размещен между наружной поверхностью кольцевого выступа и внутренней поверхностью стакана и выполнен из материала, имеющего температуру плавления ниже 300°С. 2 н. и 2 з.п. ф-лы, 3 ил., 1 табл.

Группа изобретений относится к нефтегазовой промышленности, а именно, к оборудованию для добычи углеводородов и может быть использована в конструкциях насосно-компрессорных труб (НКТ), предназначенных для транспортировки в продуктивный пласт рабочего агента, например, в форме воды, находящейся в ультра-сверхкритическом состоянии, и имеющей температуру до 800°С при давлении до 60 МПа.

Из уровня техники известно, что для добычи трудноизвлекаемых запасов углеводородов из нефтекерогеносодержащих продуктивных пластов баженовской, доманиковой и иных свит, все более широкое применение находит термохимическая технология, основанная на применении ультра-сверхкритического парового цикла, суть которого заключается в: (1) генерации на дневной поверхности скважины рабочего агента в форме ультра-сверхкритической воды, имеющей температуру до 800°С при давлении до 60 МПа; (2) доставке рабочего агента по колонне НКТ на забой скважины в его подпакерную зону; (3) инжектировании его в продуктивный пласт.

Естественно, в силу потерь, которые неизбежно возникают при доставке рабочего агента на забой скважины, находящийся, например, на глубине 3000 метров, температура и давление рабочего агента снижаются и составляют, примерно, 500°С при давлении до 50 МПа, при этом, часть рабочего агента через стыки собранных в колонну НКТ, перетекает из полости НКТ в надпакерную зону скважины, что приводит к потерям рабочего агента, иногда весьма существенным, а также к падению его давления.

Поэтому одной из весьма значимых проблем при осуществлении термохимического воздействия на нефтекерогеносодержащие продуктивные пласты является гарантированное обеспечение герметичности стыков НКТ, расположенной в скважине колонны в течение всего срока ее эксплуатации.

В заявленной группе изобретений термин «герметичность соединений» означает гарантированную герметичность стыков труб колонны НКТ в условиях высоких температур (до 800°С) при их нагружении избыточным давлением рабочего агента в течение всего периода эксплуатации колонны НКТ.

Из современного уровня развития техники известно, что решение проблемы обеспечения герметичности стыков НКТ реализуется в нескольких направлениях: (1) герметизацией резьбовых соединений НКТ за счет особых форм и соотношений размеров соединяемых поверхностей; (2) герметизацией резьбовых соединений НКТ путем нанесения на них различных герметизирующих материалов; (3) использованием в узлах соединений герметизирующих элементов (прокладок).

Так, например, известно высокогерметичное резьбовое соединение НКТ (патент РФ №2500875, кл. Е21В 17/00, 2013 г.), содержащее охватываемый и охватывающий элементы, на концах которых на наружной и внутренней поверхностях выполнены упорные конические трапецеидальные резьбы и образующие внутренний узел уплотнения конические контактирующие между собой уплотнительные и упорные торцевые поверхности, образующие между собой острый угол, при этом профиль витка резьб охватываемого и охватывающего элементов на участке схождения опорной грани и вершины, а также на участке схождения закладной грани и вершины, выполнен скругленным, а вершины и закладные грани профиля витка резьб охватываемого и охватывающего элементов выполнены таким образом, что при свинчивании соединения они образуют между собой зазоры, на охватывающем элементе соединения на участке схода резьбы выполнена окружная проточка, на участке схождения уплотнительной поверхности и упорной торцевой поверхности охватывающего элемента выполнена окружная проточка, при этом участок схождения уплотнительной поверхности и поверхности окружной проточки охватывающего элемента, а также участок схождения уплотнительной поверхности и поверхности схода резьбы охватываемого элемента выполнены скругленными, угол наклона уплотнительной поверхности охватываемого элемента к осевой линии резьбы составляет 13-18°, а угол наклона уплотнительной поверхности охватывающего элемента - 8-12°.

Известно высокогерметичное износостойкое резьбовое соединение (патент РФ на полезную модель №129186, кл F16L 15/00, 2013 г.), содержащее сопрягаемые наружный и внутренний элементы с резьбовыми коническими участками и герметизирующий узел, выполненный в виде сопрягаемых конических радиальных и торцевых поверхностей внутреннего и наружного элементов, коническая резьба элементов имеет в сечении профиль неравнобокой трапеции с рабочим углом при вершине 13°, сопрягаемые конические торцевые поверхности выполнены под углом 15° к нормали оси резьбы, а на наружной уплотнительной поверхности внутреннего элемента с конусностью 1:10 выполнена одна или несколько разгрузочных кольцевых проточек.

Приведенные выше решения не могут обеспечить герметичность стыков при транспортировании через колонны таких НКТ рабочих агентов, имеющих высокие температуры и давление.

Герметизация резьбовых соединений НКТ путем нанесения на них различных герметизирующих материалов также используется довольно широко.

Так, например, известен способ герметизации резьбовых соединений труб (патент РФ №2498144, кл. F16L 15/04, 2013 г.), полученное которым резьбовое соединение герметизировано материалом, размещенным в межрезьбовом пространстве, причем перед размещением герметизирующего материала проведена подготовка поверхностей резьбового соединения пассивацией металла, а в качестве герметизирующего материала использована композиция сополимера тетрафторэтилена с гексафторпропиленом и графита с наполнителями.

Основным недостатком данного резьбового соединения является то, что интервал рабочих температур сополимера тетрафторэтилена с гексафторпропиленом, известного также под торговыми марками фторопласт-4МБ, тефлон FEP (США), хостафлон FEP (Германия), неофлон (Япония), составляет от -270 до +205°С, а температура его разложения составляет 380-400°С. Таким образом, сополимер тетрафторэтилена с гексафторпропиленом в силу относительно низкой температуры разложения не может быть использован для герметизации резьбового соединения НКТ, по которым необходимо транспортировать рабочий агент в форме ультра-сверхкритической воды, имеющей температуру до 800°С или в форме сверхкритической воды, имеющей минимальную температуру на забое скважины, равную 500°С.

Известно герметичное коническое трубное соединение (патент РФ №2162928, кл Е21В 17/08, 2001 г.) в котором на поверхность резьбы нанесен слой мягкого металла, при этом слой металла выполнен в виде полосы и расположен от захода в резьбу не менее на 2/3 ее рабочей длины, а на участке, приходящемся на виток с неполным профилем в зоне фаски стандартного ответного резьбового элемента, нанесен на протяжении, по крайней мере, одного витка пояском с толщиной слоя, не менее чем в два раза превышающей толщину слоя в равномерной полосе.

В качестве такого металла могут быть использованы свинец (число твердости по Бринеллю (НВ)=4 ед. и температура плавления=327,4°С) и/или олово (число твердости по Бринеллю (НВ)=5 ед. и температура плавления=231,9°С). Для сравнения число твердости по Бринеллю (НВ) титана равно 160 ед.

Известное соединение не может быть эффективным при транспортировке высокотемпературного рабочего агента высокого давления в форме воды в ультра-сверхкритическом состоянии и/или в форме воды в сверхкритическом состоянии в связи с тем, что при закачке такого рабочего агента в пласт его температура на устье скважины может достигать 800°С, а при отборе из продуктивного пласта водонефтяной эмульсии по той же самой НКТ ее температура на устье скважины составит не менее 300°С и, таким образом, нанесенный на поверхность резьбы слой мягкого металла (свинца или олова) расплавится и перейдет в жидкое состояние. Под давлением расплавленный металл будет вытеснен из резьбового соединения и герметизация резьбового соединения будет нарушена, что может привести к потере значительных объемов рабочего агента и даже к обрыву колонны НКТ, - к аварии на скважине.

Известна теплоизолированная колонна НКТ (патент РФ №2129202, кл. Е21В 17/00, 1999 г.), каждая НКТ которой включает внутреннюю трубу с расположенной на ней многослойной экранной изоляцией, наружную трубу, внутренняя труба выполнена цельной с высаженными профилированными концами, наружная труба перед монтажом сжата вдоль оси на 9-12 мм, имеет на концах конусно-упорную резьбу и снабжена седлом и клапаном, равноудаленным от концов трубы и, после герметизации седла, обваренным вакуумно-плотным швом, внутренняя и наружная трубы выполнены из одного материала и по торцам обварены вакуумно-плотными швами, на многослойной экранной изоляции размещены центрирующие кольца, между слоями многослойной экранной изоляции размещен газопоглотитель, в межтрубном пространстве создан вакуум 10-4-10-3 мм. рт.ст., при этом каждый узел герметичности колонны выполнен в виде резьбовой муфты, навернутой на резьбовые концы соединяемых НКТ, между которыми размещена уплотнительная втулка.

В результате анализа выполнения узла стыковки данной колонны НКТ, необходимо отметить, что для стыковки НКТ в колонну традиционно используется конусно-упорное резьбовое межтрубное соединение, которое при нагреве НКТ до температуры 500-800°С и при давлении до 60 МПа не обеспечивает герметичность соединения и его надежность. Кроме того, используемое для обеспечения надежности и герметичности таких соединений высокое усилие затяжки, близкое по величине к пределу прочности материла НКТ, при эксплуатации может привести к срыву резьбы. По этой причине ресурс таких соединительных элементов труб не превышает нескольких циклов «свинчивание-развинчивание».

Герметизация соединений с использованием герметизирующих элементов, например, прокладок, также известна и является наиболее приемлемой для решения задач настоящей группой изобретений.

Так, например, известно герметичное соединение труб (патент РФ №2513937, кл. Е21В 17/00, 2014 г. - наиболее близкий аналог) включающее стягивающую резьбовую муфту, навинченную на резьбовые концы соединяемых труб, между стыкуемыми торцами которых размещена герметизирующая металлическая прокладка. В процессе эксплуатации труб, например, при прокачке по ним разогретого рабочего агента, прокладка нагревается, увеличиваясь в размерах, и заполняет зазоры между поверхностями ее расположения.

Известный узел соединения не может быть эффективно использован для увеличения степени герметизации стыков НКТ в случае транспортировки высокотемпературного рабочего агента высокого давления в форме воды в ультра-сверхкритическом состоянии и/или в форме воды в сверхкритическом состоянии в связи с тем, что при закачке такого рабочего агента в пласт его температура на устье скважины может достигать 800°С, а при отборе из продуктивного пласта водонефтяной эмульсии по той же самой насосно-компрессорной трубе ее температура на устье скважины составит не менее 300°С и, таким образом, перепад температур будет равен 500°С. Такой значительный по величине перепад температур неизбежно приведет к циклическому увеличению - уменьшению степени натяга по резьбе, то есть - к циклическому изменению осевых усилий и этот процесс неизбежно станет причиной ослабления усилия затяжки резьбы и, соответственно, медленному отвинчиванию труб из муфты и уменьшению степени герметичности трубного соединения.

Другим, не менее существенным недостатком известного узла является то, что прокладка, изготовленная из алюминия, в процессе температурных деформаций может дополнительно нагружать резьбовые соединения осевой силой, примерно, в 60 тонн.

Данные осевые силы являются дополнительной нагрузкой на резьбовое соединение НКТ на фоне ослабления прочностных характеристик металлов или сплавов в присутствии высоких температур, что может привести к обрыву колонны НКТ и к аварии на скважине.

Техническим результатом заявленной группы изобретений является разработка узлов герметичности соединений НКТ, которые гарантированно способны обеспечивать герметичность стыков НКТ, собранных в опущенную в скважину колонну, в условиях действия на стыки высоких температур (до 800°С) и при их нагружении избыточным давлением рабочего агента (до 60 МПа) в течение длительного времени.

Указанный технический результат обеспечивается тем, что в узле герметичности соединений насосно-компрессорных труб, включающем стыкуемые друг с другом посредством стягивающей резьбовой муфты концы насосно-компрессорных труб, а также герметизирующую прокладку, новым является то, что конец одной из соединяемых насосно-компрессорных труб выполнен в виде стакана, на верхней части внутренней поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с дном стакана, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа и внутренней поверхностью стакана и выполнен из материала, имеющего температуру плавления ниже 300°С, в частности, из висмута или сплава, содержащего висмут.

В варианте узла герметичности соединений насосно-компрессорных труб, новым является то, что в стягивающей муфте образована кольцевая расточка, а резьба выполнена на части внутренней ее поверхности, на конце одной из соединяемых насосно-компрессорных труб выполнен кольцевой выступ, на наружной образующей поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с торцом кольцевого выступа первой насосно-компрессорной трубы, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа второй насосно-компрессорной трубы и внутренней поверхностью расточки стягивающей муфты и выполнен из материала, имеющего температуру плавления ниже 300°С.

В заявленной группе изобретений узлы герметичности соединений НКТ, относятся к объектам одного вида, одинакового назначения и обеспечивают при использовании достижение одного и того же технического результата, то есть, являются вариантами, следовательно, требование единства изобретения в данной заявке соблюдено.

Сущность заявленной группы изобретений поясняется графическими материалами, на которых:

- на фиг. 1 - узел герметичности соединения двух НКТ в сборе (вариант 1);

- на фиг. 2- узел герметичности соединения двух НКТ в сборе (вариант 2);

- на фиг. 3 - график изменения плотности и расширения висмута в зависимости от его температуры.

- табл. - материалы, которые могут быть использованы для изготовления герметизирующих прокладок.

В описании приведенными ниже позициями обозначены следующие конструктивные элементы узлов герметичности

Вариант 1:

1. НКТ, конец которой выполнен в виде стакана с внутренней резьбой;

2. НКТ, конец которой выполнен с кольцевым выступом;

3. Стягивающая муфта с наружной резьбой;

4. Герметизирующая прокладка, выполненная из материала (металла или сплава), имеющего температуру плавления ниже 300°С;

5. Резьбовое соединение НКТ со стягивающей муфтой;

6. Прижимная (нижняя) поверхность кольцевого выступа;

7. Опорная поверхность стакана (дно);

8. Прижимная поверхность стягивающей муфты;

9. Прижимная боковая поверхность кольцевого выступа.

Вариант 2:

10. НКТ, конец которой выполнен с кольцевым выступом с резьбой по его наружной поверхности;

11. НКТ, конец которой выполнен с кольцевым выступом;

12. Стягивающая муфта с внутренней резьбой;

13. Герметизирующая прокладка, выполненная из материала (металла или сплава), имеющего температуру плавления ниже 300°С;

14. Резьбовое соединение НКТ со стягивающей муфтой;

15. Опорная поверхность торца НКТ 10 с наружной резьбой на ее кольцевом выступе;

16. Прижимная нижняя поверхность кольцевого выступа НКТ 11;

17. Прижимная поверхность стягивающей муфты;

18. Прижимная боковая поверхность кольцевого выступа НКТ 11.

Узел герметичности соединений НКТ (фиг. 1 - вариант 1) включает соответствующим образом выполненные стыкуемые при сборке колонны концы НКТ 1 и НКТ 2.

Конец НКТ 1 выполнен в виде стакана, образованного, например, раскаткой или высадкой. Наружная поверхность стакана может иметь различную форму, например, цилиндрическую или граненую. Внутренняя поверхность стакана образована опорной плоской поверхностью 7 (дно стакана), а также боковой поверхностью, образованной цилиндрической частью, примыкающей к дну стакана, и сопряженной с ней конической поверхностью, на которой имеется резьба.

На конце НКТ 2 имеется кольцевой выступ с прижимной нижней торцевой поверхностью 6 и прижимной боковой поверхностью 9.

Узел укомплектован стягивающей муфтой 3, на которой имеется наружная коническая поверхность с выполненной на ней резьбой, а также прижимная торцевая поверхность 8.

Узел оснащен герметизирующей прокладкой 4. Прокладка может быть выполнена из широкой гаммы материалов, представленных, в частности, в таблице. Общим для этих материалов является то, что их температура плавления не должна превышать 300°С.

Внутренний диаметр стакана НКТ 1 в любом случае больше наружного диаметра кольцевого выступа НКТ 2. Это необходимо для размещения в пространстве между ними герметизирующей прокладки 4.

Узел герметичности формируют при сборке НКТ в колонну следующим образом.

НКТ 1 помещают в слайдер (не показан) в вертикальном положении стаканом вверх. В полость стакана НКТ 1, на его опорную поверхность 7 устанавливают герметизирующую прокладку 4, внутренний диаметр которой несколько больше наружного диаметра кольцевого выступа НКТ 2.

НКТ 2 стыкуют с НКТ 1 таким образом, чтобы поверхность 6 кольцевого выступа НКТ 2 прижималась к опорной поверхности 7 стакана НКТ 1, а его боковая поверхность 9 находилась в полости герметизирующей прокладки 4. На НКТ 2 надевают стягивающую муфту 3 и перемещают до контакта ее резьбовой поверхности с резьбовой поверхностью стакана НКТ 1.

Гидравлическим ключом (не показан) вращают стягивающую муфту 3, свинчивая резьбы муфты и стакана, образуя резьбовое соединение 5. При этом муфта 3, своей прижимной поверхностью 8 поджимает прижимную поверхность 6 кольцевого выступа к опорной поверхности (дну) 7 стакана, а также сжимает герметизирующую прокладку 4, действуя на ее верхний торец.

После завершения операции стыковки НКТ 1 и НКТ 2, прижимная поверхность 6 кольцевого выступа НКТ 2 плотно прижата к опорной поверхности 7 дна стакана НКТ 1, а боковые поверхности герметизирующей прокладки 4 плотно поджаты к внутренней цилиндрической поверхности стакана НКТ 1, а также к прижимной поверхности 9 кольцевого выступа НКТ 2. Узел сформирован.

Приведенная выше операция формирования узла герметичности повторяется до тех пор, пока колонна НКТ требуемой длины не будет сформирована и опущена в скважину.

По колонне НКТ с дневной поверхности на забой скважины в ее подпакерный объем подают под давлением рабочий агент - ультра-сверхкритическую или сверхкритическую воду.

Под действием рабочего агента герметизирующая прокладка 4 постепенно нагревается и, по достижении температуры своего плавления, переходит в жидкое состояние и надежно герметизирует стыки НКТ и резьбовое соединение.

Если герметизирующая прокладка выполнена из висмута или сплава, содержащего висмут, то еще до перехода герметизирующей прокладки 4 из твердого состояния в жидкое, некоторая часть рабочего агента через стык, образованный прижимными поверхностями 6 и 7, попадает в объем, в котором находится герметизирующая прокладка 4. В результате химической реакции при взаимодействии ультра-сверхкритической и/или сверхкритической воды с висмутом герметизирующей прокладки 4, синтезируются твердые наноразмерные частицы оксидов металлов (например, оксид висмута (Bi2O3)), которые достаточно быстро кольматируют микро и наноразмерные флюидопроводящие каналы в резьбовом соединении 5 и в стыке, образованном прижимной поверхностью 8 стягивающей муфты и контактирующим с ней верхним торцом кольцевого выступа НКТ 2. По мере нагрева герметизирующая прокладка 4 постепенно переходит из твердого в жидкое состояние, окончательно герметизируя стыки НКТ и резьбовое соединение.

Таким образом, выполнение концов НКТ 1 и НКТ 2, а также используемая в узле герметизирующая прокладка гарантированно обеспечивают герметичность стыков НКТ во всех условиях их эксплуатации.

Узел герметичности соединений НКТ (фиг. 2 - вариант 2) включает соответствующим образом выполненные стыкуемые при сборке колонны концы НКТ 10 и НКТ 11.

На конце НКТ 10 образован кольцевой выступ конической формы, на образующей которого имеется резьба. Торец 15 данного выступа (верхний в плоскости чертежа) является опорной поверхностью.

На конце НКТ 11 имеется кольцевой выступ с прижимной нижней (в плоскости чертежа) торцевой поверхностью 16 и прижимной боковой поверхностью 18.

Узел укомплектован стягивающей муфтой 12, в торце которой выполнена расточка, часть внутренней поверхности которой имеет коническую форму с выполненной на ней резьбой. Дно расточки является прижимной поверхностью 17.

Узел также оснащен герметизирующей прокладкой 13.

Внутренний диаметр расточки стягивающей муфты 12 в любом случае больше наружного диаметра кольцевого выступа НКТ 11. Это необходимо для размещения в пространстве между ними герметизирующей прокладки 13.

Узел герметичности формируют при сборке НКТ в колонну следующим образом.

НКТ 10 помещают в спайдер и располагают кольцевым выступом вверх.

На опорную торцевую поверхность 15 укладывают герметизирующую прокладку 13.

НКТ 11 стыкуют с НКТ 10 таким образом, чтобы поверхность 16 кольцевого выступа НКТ 11 прижималась к опорной поверхности 15 кольцевого выступа НКТ 10, а его боковая поверхность зашла в полость герметизирующей прокладки 13. На НКТ 11 надевают стягивающую муфту 12 и перемещают до контакта ее резьбы с резьбой кольцевого выступа НКТ 10.

Гидравлическим ключом вращают стягивающую муфту 12, свинчивая резьбы муфты и выступа НКТ 10, образуя резьбовое соединение 14. При этом муфта 12 своей прижимной поверхностью 17 поджимает прижимную поверхность 16 кольцевого выступа НКТ 11 к опорной поверхности 15 кольцевого выступа НКТ 10, а также сжимает герметизирующую прокладку 13, действуя на ее верхний торец.

После завершения операции стыковки НКТ 10 и 11, опорная поверхность 15 торца НКТ 10 и прижимная поверхность 16 кольцевого выступа НКТ 11 плотно прижаты друг к другу, а прижимная поверхность 17 стягивающей муфты 12 плотно прижата к верхнему (в плоскости чертежа) торцу кольцевого выступа НКТ 11, а его боковая поверхность 18 плотно прижата к герметизирующей прокладке 13.

Приведенная выше операция формирования узла герметичности повторяется до тех пор, пока колонна НКТ требуемой длины не будет сформирована и опущена в скважину.

Работа собранного узла осуществляется аналогично работе узла по варианту 1.

Как в первом, так и во втором варианте узла герметизирующие прокладки 4 и 13, могут быть выполнены из висмута или сплава, содержащего висмут.

Существенность данного признака объясняется уникальными свойствами висмута, которыми обладает этот металл в процессе фазовых переходов из твердого состояния в жидкое состояние и обратно (фиг. 3) при нагреве узлов герметичности до 600°С в ходе транспортировки рабочего агента по НКТ и при их остывании до 300°С в ходе отбора углеводородов на дневную поверхность скважины.

Так, например, в процессе эксплуатации НКТ с узлами герметичности, описанными выше, находясь на глубине 3000 метров, висмут в твердом состоянии и при температуре горной породы, равной 100°С, имеет плотность 9,78 гр/см3. При нагреве узлов герметичности и при переходе висмута при температуре 271,4°С из твердого состояния в жидкое, его плотность резко/скачкообразно возрастает с 9,69 гр/см3 (Т=271,3°С) до 10,09 гр/см3 (Т=271,4°С), а объем при этом резко/скачкообразно уменьшается. В процессе его дальнейшего нагрева, например, до температуры 500°С его объем увеличивается, а плотность уменьшается с 10,09 гр/см3 (Т=271,4°С) до 9,78 гр/см3 (Т=500°С). В целом, при нагреве и остывании в интервале указанных температур, - от 100°С до 500°С, объем висмута в силу теплового расширения или сжатия изменяется в пределах, примерно, 3%, а от 100°С до 600°С, - в пределах 4%. Именно это свойство висмута и является существенным при использовании его в качестве материала для изготовления герметизирующих прокладок, что позволяет гарантированно не допустить разрыва узлов герметичности в результате теплового расширения металлов и/или сплавов при их переходе из твердого состояния в жидкое.

Как в первом, так и во втором варианте, если герметизирующие прокладки 4 и 13 выполнены из висмута или сплава, содержащего висмут, то они в твердом состоянии должны занимать не более 90% объема, образованного дном стакана НКТ 1, его внутренней цилиндрической поверхностью и боковой прижимной поверхностью кольцевого выступа НКТ 2 для варианта 1 или образованного опорной поверхностью 15 кольцевого выступа НКТ 10, внутренней поверхностью расточки стягивающей муфты 12 и прижимной боковой поверхностью кольцевого выступа НКТ 11 для варианта 2.

Если герметизирующие прокладки 4 и 13 выполнены из материала (металла или сплава, в том числе, приведенного в таблице), имеющего температуру плавления ниже 300°С, то для обеспечения целостности узлов герметичности при их нагреве до температуры 800°С, они в твердом состоянии должны занимать не более 70% объема, сформированного конструктивными элементами, приведенными выше для герметизирующей прокладки из висмута или сплава, содержащего висмут

Необходимо отметить, что для производства НКТ, способных работать одновременно при высоких температурах и давлениях, а также обладать максимально возможной степенью коррозионной стойкости в настоящее время наиболее целесообразно использовать сплав INCONEL 740Н или его аналоги, например, SANICRO 25.

Для повышения надежности резьбового соединения стягивающей муфты и НКТ наиболее целесообразно использовать премиальную резьбу TMK UP™ GX, специально разработанную компанией «Трубная металлургическая компания» (Россия) для реализации тепловых технологий увеличения нефтеотдачи (МУН).

При этом решение по варианту 2, способное выдерживать большие нагрузки, целесообразно применять в обсадных трубах, имеющих внутренний диаметр более 194 мм, а решение по варианту 1, способное выдерживать меньшие нагрузки, чем решение по варианту 2, целесообразно применять в обсадных трубах, имеющих внутренний диаметр менее 178 мм.


УЗЕЛ ГЕРМЕТИЧНОСТИ СОЕДИНЕНИЙ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ (ВАРИАНТЫ)
УЗЕЛ ГЕРМЕТИЧНОСТИ СОЕДИНЕНИЙ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ (ВАРИАНТЫ)
УЗЕЛ ГЕРМЕТИЧНОСТИ СОЕДИНЕНИЙ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ (ВАРИАНТЫ)
УЗЕЛ ГЕРМЕТИЧНОСТИ СОЕДИНЕНИЙ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
02.10.2019
№219.017.cb87

Модуль генерации ультра-сверхкритического рабочего агента

Изобретение относится к модулю генерации ультра-сверхкритического рабочего агента, подаваемого в нефтесодержащие пласты для повышения их отдачи. Техническим результатом является создание высокопроизводительного модуля генерации ультра-сверхкритического рабочего агента. Модуль содержит полый...
Тип: Изобретение
Номер охранного документа: 0002701008
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cf7b

Способ облагораживания тяжелых углеводородов и установка для его осуществления

Предложен способ облагораживания тяжелых углеводородов, включающий загрузку сырья - тяжелых углеводородов, в реактор крекинга, инжектирование в реактор крекинга катализатора, крекинг сырья в реакторе с последующей сепарацией из крекированных тяжелых углеводородов балластных примесей, где перед...
Тип: Изобретение
Номер охранного документа: 0002700689
Дата охранного документа: 19.09.2019
Showing 11-20 of 20 items.
02.10.2019
№219.017.cf7b

Способ облагораживания тяжелых углеводородов и установка для его осуществления

Предложен способ облагораживания тяжелых углеводородов, включающий загрузку сырья - тяжелых углеводородов, в реактор крекинга, инжектирование в реактор крекинга катализатора, крекинг сырья в реакторе с последующей сепарацией из крекированных тяжелых углеводородов балластных примесей, где перед...
Тип: Изобретение
Номер охранного документа: 0002700689
Дата охранного документа: 19.09.2019
30.10.2019
№219.017.db95

Насосно-компрессорная труба с теплоизоляционным покрытием

Изобретение относится к конструкциям насосно-компрессорных труб (НКТ) с теплоизоляционным покрытием (ТИП) и может быть использовано при строительстве из стыкуемых друг с другом НКТ теплоизолированных колонн глубиной до 5000 метров в нефтегазовой промышленности и геотермальной энергетике....
Тип: Изобретение
Номер охранного документа: 0002704405
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbaf

Устройство для разделения ствола скважины на изолированные друг от друга участки

Изобретение относится к устройствам для разделения ствола скважины на изолированные друг от друга участки. Техническим результатом является повышение эффективности работы. Устройство для разделения ствола скважины на изолированные друг от друга участки содержит полый корпус, имеющий возможность...
Тип: Изобретение
Номер охранного документа: 0002704404
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbb3

Установка для хранения и дозированной подачи рабочих агентов в продуктивный пласт

Изобретение относится к нефтепромысловому оборудованию, предназначенному для хранения и дозированной подачи (закачки) рабочих агентов в углеводородосодержащие продуктивные пласты трудноизвлекаемых запасов углеводородов. Установка включает модули для хранения и подачи рабочих агентов, каждый из...
Тип: Изобретение
Номер охранного документа: 0002704402
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dc01

Способ добычи высокотехнологичной нефти и технологический комплекс для его осуществления

Группа изобретений относится к добыче природных битумов, тяжелых и высоковязких нефтей. Технический результат - повышение нефтеотдачи пластов, формирование высокопроницаемой внутрипластовой реторты, постоянное восстановление проницаемости околоскважинной зоны. Способ добычи нефти включает...
Тип: Изобретение
Номер охранного документа: 0002704684
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc57

Способ внутрипластовой молекулярной модификации глубокозалегаемых тяжелых углеводородов и устройство для его реализации

Группа изобретений относится к нефтегазовой промышленности и может быть использована для необратимой внутрипластовой молекулярной модификации глубокозалегаемых тяжелых углеводородов. Устройство содержит емкость для воды, соединенную трубопроводом, в который встроен насос, с генератором...
Тип: Изобретение
Номер охранного документа: 0002704686
Дата охранного документа: 30.10.2019
27.06.2020
№220.018.2bce

Установка для генерации ультра-сверхкритического рабочего агента

Изобретение относится к оборудованию для нефтегазовой промышленности и может быть использовано для генерации рабочего агента высокой температуры и давления. Установка содержит модуль водоподготовки, модуль генерации ультра-сверхкритического рабочего агента, первый насосный блок, предназначенный...
Тип: Изобретение
Номер охранного документа: 0002724676
Дата охранного документа: 25.06.2020
18.07.2020
№220.018.3479

Генератор ультра-сверхкритического рабочего агента

Изобретение относится к оборудованию для нефтегазовой промышленности и может быть использовано для генерации ультра-сверхкритического рабочего агента, инжектируемого в нефтекерогеносодержащие пласты. Генератор ультра-сверхкритического рабочего агента содержит первый теплогенерирующий модуль, в...
Тип: Изобретение
Номер охранного документа: 0002726702
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.347c

Способ повышения эффективности добычи высокотехнологичной нефти из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления

Группа изобретений относится к нефтегазовой промышленности и может быть использована для добычи высокотехнологичной нефти из нефтекерогеносодержащих пластов сланцевых формаций без использования гидравлического разрыва пласта, а также для добычи природных битумов, тяжелых и высоковязких нефтей....
Тип: Изобретение
Номер охранного документа: 0002726703
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.3480

Способ повышения эффективности добычи углеводородов из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления

Группа изобретений относится к нефтегазовой промышленности и может быть использована для повышения эффективности добычи углеводородов из нефтекерогеносодержащих пластов сланцевых формаций без использования гидравлического разрыва пласта, а также для добычи природных битумов, тяжелых и...
Тип: Изобретение
Номер охранного документа: 0002726693
Дата охранного документа: 15.07.2020
+ добавить свой РИД