×
04.10.2019
219.017.d206

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА С ПОМОЩЬЮ МОДИФИЦИРОВАННОГО ХИТОЗАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области бионанотехнологии и может быть использовано для получения на его основе наночастиц для применения в биомедицинской области в качестве антибактериального агента широкого спектра действия. Получают наночастицы серебра в среде модифицированного хитозана, в котором полимер играет роль стабилизатора наночастиц и восстановителя ионов серебра. Используют водорастворимый модифицированный хитозан с ковалентно связанным антиоксидантом - галловой кислотой, на основе которого готовят раствор с концентрацией 1 мг/мл. Затем доводят рН до значений 7-12 с помощью водного аммиака, после чего в исходный раствор при постоянном перемешивании добавляют раствор нитрата серебра концентрацией 2 мг/мл. Соотношение объема раствора модифицированного хитозана к объему раствора нитрата серебра 10:1-5:3. Процесс ведут при температуре 25-95°С в течение 15-45 минут, после чего реакционную массу диализуют, центрифугируют, в результате получают раствор стабилизированных наночастиц серебра. Способ позволяет получить наночастицы серебра размером от 10 до 100 нм, стабилизированых модифицированным биополимером при стабильности продукта в течение 6 месяцев. 8 ил., 12 пр.

Изобретение относится к области бионанотехнологии и может быть использовано для получения на его основе наночастиц для применения в биомедицинской области в качестве антибактериального агента широкого спектра действия. Сущность предложенного способа заключается в том, что синтез наночастиц серебра осуществляется в матрице модифицированного водорастворимого хитозана. Модифицированный биополимер, полученный в результате полимер аналогичных превращений, содержит гидрофильную функциональную группу (четвертичная аммониевая, карбоксильная и т.п.) и ковалентно связанную 3,4,5-тригидроксибензойную (галловую) кислоту. В результате синтез наночастиц происходит в водном растворе полимера в условиях рН 7-10 при температуре 25-95°С, нормальном давлении окружающей среды (760 мм рт.ст.), в течение 15-45 минут. По наличию устойчивого пика на УФ спектре в области пика плазмонного резонанса судят об окончании реакции.

Наночастицы серебра являются одним из наиболее привлекательных наноматериалов для коммерциализации. [D. Inder [и др.] The Scope of Nano-Silver in Medicine: A Systematic Review. Int J Pharmacogn Chinese Med 2018, 2(2): 000134]. Они широко используются как антибактериальные, противовирусные, противовоспалительные и биомедицинские продукты [L. Ge [и др.] Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J.Nanomed. 2014. 9. 2399-2407]. Для получения наночастиц металлов наиболее часто используются методы, основанные на восстановлении ионов металла в растворе в присутствии стабилизатора (вещества, способствующего сохранению наночастиц в наноразмерном состоянии, препятствующего их агломерации) [Kholoud М.М. [и др.] Synthesis and applications of silver nanoparticles. J. Chem. (2010) 3, 135-140].

Синтез наночастиц может осуществляться либо путем химического восстановления в растворе с применением химических восстановителей (аскорбиновой кислоты, гидразина, боргидрида натрия, глюкозы и других, при нагревании более 95°С, в качестве катализатора используют гидроксид натрия) и стабилизаторов. Путем физического воздействия: с применением источников тока или излучения, обеспечивающих восстановление (фотохимический, радиационно-химический и электрохимический синтез), либо биологического восстановления - с использованием водных сред, содержащих биологические восстановители и стабилизаторы (биологический или «зеленый» синтез). Методы различаются, главным образом, по типу восстановителя и стабилизатора. [S. Iravani [и др.] Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014. 9(6)385-406].

Известен способ получения наночастиц серебра в среде органического растворителя, включающий химическое восстановление из раствора соли серебра с получением в осадке наночастиц серебра [Патент РФ 2448810]. Способ заключается в предварительном смешивании 4%-ого раствора нитрата серебра в этиловом спирте с 1%-ным раствором гидроксида натрия в этиловом спирте с получением осадка оксида серебра. Далее получают аммиачный раствор оксида серебра в этиловом спирте путем пропускания газообразного аммиака до полного растворения осадка, а восстановление серебра осуществляют из аммиачного раствора оксида серебра в этиловом спирте под воздействием акустической кавитации в течение 5-15 мин. В качестве органического растворителя использовали этиленгликоль, диэтиленгликоль или глицерин.

Известен электрохимический способ получения наночастиц серебра [Патент РФ 2410471] в вводной среде, включающий растворение стабилизирующих компонентов (органических и неорганических в две стадии при нагревании, а затем при охлаждении, соответственно) в растворителе (дистиллированной воде), помещение в полученный раствор стабилизатора наночастиц анода (электрохимическое растворение анода при пропускании через раствор постоянного тока). В качестве катода используют пластину из нержавеющей стали. Таким образом, обеспечивается получение наночастиц металлов в водной среде.

Известен фотохимический способ получения стабилизированных наночастиц серебра [Патент РФ 2569546], включающий взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре. В качестве восстановителя и стабилизирующего агента используют додецилсульфат натрия или полимерный продукт: поливинилпирролидон, поливиниловый спирт, крахмал.

Известен способ получения коллоидного раствора наночастиц серебра [Патент РФ 2474471], включающий растворение нитрата серебра и полимера-стабилизатора в воде, барботирование инертного газа через слой полученного раствора. До барботирования в полученный раствор добавляют спирт: изопропиловый спирт или этанол, или этиленгликоль. Для восстановления ионов серебра в наночастицы использовали гамма-облучение раствора.

Выбор метода синтеза наночастиц металлов, использование малотоксичных восстановителей и стабилизаторов является приоритетной задачей исследователей. Стабилизирующие агенты (природные полимеры) играют основную роль в биосовместимости наночастиц серебра [Lian-Hua Fu [и др.] Green synthesis of silver nanoparticles with enhanced antibacterial activity using holocellulose as a substrate and reducing agent RSCAdv., 2016, 6, 28140-28148 DOI: 10.1039/c5ra27421d].

Известно об использовании полисахаридов в качестве стабилизатора при формировании наночастиц серебра - крахмала [N. Vigneshwaran [и др.] A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch Carbohydr. Res. 341 (2006) 2012-2018], агара [S. Shankar [и др.] Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polymers 130 (2015) 353-363], гепарина [W. Yuan [и др.] Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids and Surfaces B: Biointerfaces 76 (2010) 549-555], хитозана [A Murugadoss [и др.] A ‘green’ chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19 (2008) 015603 doi:10.1088/0957-4484/19/01/015603], а также водорастворимого карбоксиметилхитина [Патент РФ №2474471].

Химическая модификация хитозана является важным шагом для улучшения его свойств, таких как растворимость, биосовместимость, биологическая активность и др. Введение гидрофильного заместителя в состав полимерной цепи является одним из способов улучшения растворимости биополимера (В. Shagdarova, A. Lunkov, V. Varlamov. Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium)propyl] chloride chitosan derivatives. Int. J. Biol. Macromol. 2019. V. 124. P. 994-1001), а введение остатков полифенольных кислот значительно усиливает антиоксидантные и антимикробные свойства [А.П. Луньков, Б.Ц. Шагдарова, Ю.В. Жуйкова, А.В. Ильина, В.П. Варламов. Свойства функциональных пленок на основе производного хитозана с галловой кислотой. Прикладная биохим. микробиол. 2018. Т. 54. №5. С. 483-490]. Производные хитозана с полифенольными кислотами имеют потенциал применения в области пищевых технологий [J. Liu, Н. Pu, S. Liu, J. Kan, С. Jin. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydr. Polym. 2017. V. 174. P. 999-1017].

Наиболее близкий к заявляемому является способ получения на основе хитозана, ковалентно связанного с 3,4-дигидрокси коричной кислотой [Huang X. [и др.] Catechol-Functional Chitosan/Silver Nanoparticle Composite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms // Scientific Reports. 2017. №1 (7). C. 1860]. Этот способ был выбран в качестве прототипа. В данной работе синтез наночастиц осуществлялся при 70°С в течение 1 часа с последующим диализом реакционной смеси в дистиллированной воде. Недостатком наиболее близкого аналога является отсутствие в литературе подробных условий проведения синтеза (рН реакционной среды) делает невозможным воспроизведение указанного результата. Ограниченная растворимость производного ведет к протеканию процесса синтеза в гетерогенных условиях, кроме того, стабильность полученных данным способом наночастиц в водном растворе остается под вопросом. Известно, что восстановительная способность полифенолов связана с наличием в ароматической структуре гидроксильных групп. Введение дигидроксикоричной кислоты, содержащей крупный заместитель снижает подвижность полимерной цепи, а следовательно и возможность хелатирования ионов восстанавливаемого металла. Все перечисленные факторы ведут к снижению скорости протекания химической реакции восстановления и уменьшению стабильности наночастиц с течением времени.

Техническая задача - улучшение известного ранее способа синтеза наночастиц серебра с использованием в качестве стабилизатора и восстановителя модифицированного хитозана, разработка альтернативного способа на основе нового производного хитозана.

Технический результат - получение наночастиц серебра размером от 10 до 100 нм, стабилизированых модифицированным биополимером, достижение стабильности продукта в течение 6 месяцев, которая подтверждена УФ спектрами, выявление условий формирования наночастиц в водном растворе модифицированного хитозана: рН=7-12, t=25-95°C, τ=10-45 минут.

Достигнутый результат осуществляется за счет использования водорастворимого производного биополимера с ковалентно связанным более сильным, чем в прототипе восстановителем. Галловая кислота в модифицированном хитозане обладает значительно более высоким восстановительным потенциалом за счет трех реакционноспособных гидроксильных групп в структуре.. Поскольку хитозан не растворим в воде при нейтральных значениях рН, водорастворимые производные хитозана лучше подходят для синтеза и стабилизации образующихся наночастиц в водном растворе. Нами были рассмотрены водорастворимые производные хитозана: N-[(2-гидрокси-3-триметиламмоний)пропил]хитозан хлорид (КХГ) и N-сукцинил хитозан (СХГ) со степенью замещения около 50%. Они отличаются растворимостью в условиях рН>7, за счет чего являются более подходящими для протекания восстановительной реакции. Помимо диализа была добавлена стадия центрифугирования для дополнительной очистки от побочных продуктов в виде нерастворимых солей серебра и крупных агломератов наночастиц.

Сущность способа получения наночастиц серебра в среде модифицированного хитозана путем взаимодействия с нитратом серебра, отличающегося тем, что стабилизатором является модифицированное водорастворимое производное хитозана с гидрофильной функциональной группой и антиоксидантом - галловой кислотой. Навеску (5-20 мг) производного растворяют в воде, доводят рН до значений 7.0-12 с помощью раствора водного аммиака. Затем при постоянном активном перемешивании постепенно добавляют соответствующее количество прекурсора - раствор нитрата серебра 0.5-12 мл. (2 мг/мл) Полученную реакционную массу диализуют против воды, центрифугируют при 5000 об/мин, 15-30 мин. Раствор, содержащий наночастицы серебра лиофильно высушивают. В результате получается сухая навеска модифицированного хитозана с серебром, которую в дальнейшем можно редиспергировать в воде при нейтральном значении рН и использовать в качестве антибактериального агента. Факт формирования образований в виде наночастиц серебра подтвержден спектрофотометрически, методами атомно-силовой и электронной микроскопии (Рис. 1-8).

Пример 1. 10 мг производного КХГ, полученного на основе хитозана с молекулярной массой 28 кДа растворяют в 10 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=7. В полученный таким образом раствор при комнатной (24°С) температуре по каплям добавляют 1 мл раствора AgNO3 (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 15 минут. Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об./мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 12.5 мг стабилизированных модифицированным хитозаном наночастиц серебра.

Пример 2. 20 мг производного КХГ, полученного из хитозана с молекулярной массой 28 кДа растворяют в 20 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=8.5. В полученный таким образом раствор при комнатной температуре по каплям добавляют 4 мл раствора AgNO3 (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 30 минут. Затем реакционную массу помещают круглодонную колбу и держат при 75°С в течение 45 минут. Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об./мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 25 мг стабилизированных модифицированным хитозаном наночастиц серебра.

Пример 3. 30 мг производного КХГ, полученного из хитозана с молекулярной массой 28 кДа растворяют в 30 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=10. В полученный таким образом раствор при комнатной температуре по каплям добавляют 6 мл раствора AgNO3 (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 30 минут. Затем реакционную массу помещают круглодонную колбу и держат при 100°С в течение 60 минут. Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об./мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 35 мг стабилизированных модифицированным хитозаном наночастиц серебра.

Пример 4. 10 мг производного СХГ, полученного из хитозана с молекулярной массой 28 кДа растворяют в 10 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=7. В полученный таким образом раствор при комнатной температуре по каплям добавляют 2 мл раствора AgNO3 (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 15 минут. Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об./мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 12.5 мг наночастиц с хитозаном.

Пример 5. 20 мг производного СХГ, полученного из хитозана с молекулярной массой 28 кДа растворяют в 20 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=9. В полученный таким образом раствор при комнатной температуре по каплям добавляют 9 мл раствора AgNO3 (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 30 минут. Затем реакционную массу помещают круглодонную колбу и держат при 75°C в течение 45 минут Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об./мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 25 мг наночастиц с хитозаном.

Пример 6. 20 мг производного, полученного из хитозана с молекулярной массой 5 кДа растворяют в 20 мл дистилированной воды на магнитной мешалке. Затем по каплям подтитровывают раствор на рН-метре концентрированным раствором 25% NH4OH до рН=12. В полученный таким образом раствор при комнатной температуре по каплям добавляют 9 мл раствора нитрата серебра (2 мг/мл). Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета в течение 30 минут. Наблюдают потемнение раствора от темно-желтого до темно-коричневого цвета. Затем реакционную массу помещают круглодонную колбу и держат при 95°С в течение 60 минут. Полученную реакционную массу помещают в диализную трубку из регенерированной целлюлозы (25×16 мм, ММ=14 кДа). Диализную воду в процессе многократно меняют. Условия проведения диализа: рН 5.6-5.7, 23-25°С, 300 об/мин, 24 ч, 1:20 об./об. После 24 ч, раствор центрифугируют при 5000 об/мин, 15 мин, замораживают и лиофильно высушивают. Получают 24 мг наночастиц с хитозаном.

Примеры 7-9 аналогично указанным выше, но с молекулярной массой 5 кДа

Примеры 9-12 аналогично указанным выше, но с молекулярной массой 50 кДа

Способ получения наночастиц серебра в среде модифицированного хитозана, в котором полимер играет роль стабилизатора наночастиц и восстановителя ионов серебра, отличающийся тем, что используют водорастворимый модифицированный хитозан с ковалентно связанным антиоксидантом - галловой кислотой, на основе которого готовят раствор с концентрацией 1 мг/мл, затем доводят рН до значений 7-12 с помощью водного аммиака, после чего в исходный раствор при постоянном перемешивании добавляют раствор нитрата серебра концентрацией 2 мг/мл, в соотношении объема раствора модифицированного хитозана к объему раствора нитрата серебра 10:1-5:3 при температуре 25-95°С в течение 15-45 минут, после чего реакционную массу диализуют и центрифугируют с получением раствора стабилизированных наночастиц серебра.
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА С ПОМОЩЬЮ МОДИФИЦИРОВАННОГО ХИТОЗАНА
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА С ПОМОЩЬЮ МОДИФИЦИРОВАННОГО ХИТОЗАНА
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
23.08.2019
№219.017.c257

Способ получения производных хитозана для визуализации клеточных мембран и создания систем доставки лекарств с повышенной мукоадгезией

Изобретение относится к способу получения производных хитозана, которые могут использоваться для создания носителей для доставки лекарств к эпителиальным клеткам барьерных органов и тканей, а также для получения флуоресцентных проб для маркирования мембран клеток в медицинской и...
Тип: Изобретение
Номер охранного документа: 0002697872
Дата охранного документа: 21.08.2019
19.03.2020
№220.018.0d0f

Штамм rhodococcus erythropolis ho-ks22, обладающий высокой уреазной активностью, способный к генерации в нефтяном пласте нефтевытесняющего агента биопав

Изобретение относится к нефтедобывающей промышленности и может быть использовано в методах повышения нефтеизвлечения с использованием бактериальных штаммов. Штамм Rhodococcus erythropolis HO-KS22, депонированный в ВКМ как Ac-2807D, способный к генерации непосредственно в нефтяном пласте...
Тип: Изобретение
Номер охранного документа: 0002717025
Дата охранного документа: 17.03.2020
19.03.2020
№220.018.0d38

Пищевой функциональный концентрат для приготовления напитка и способ его получения

Изобретение относится к области пищевой промышленности и может быть использовано для производства функциональных продуктов, в частности безалкогольных напитков. Предложен пищевой концентрат для приготовления напитков, основу которого составляют солод в виде сухого солодового экстракта, молоко в...
Тип: Изобретение
Номер охранного документа: 0002717008
Дата охранного документа: 17.03.2020
31.07.2020
№220.018.3a07

Способ получения ковалентно-связанного хитозан-меланинового комплекса из мухи черная львинка hermetia illucens

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения ковалентного хитозан-меланинового комплекса из подмора мухи черная львинка Hermetia illucens. Сущность предложенного способа заключается в том, что исходная масса подмора обезжиривается диэтиловым...
Тип: Изобретение
Номер охранного документа: 0002728458
Дата охранного документа: 29.07.2020
08.08.2020
№220.018.3e24

Промышленный способ микробиологического синтеза фермента пенициллин g ацилазы escherichia coli

Изобретение относится к биотехнологии и касается способа промышленного культивирования рекомбинантного штамма E.coli BL21(DE3)/pMD704 - продуцента пенициллин G ацилазы. Способ обеспечивает получение в промышленно значимых количествах препарата ECOPGA. Способ предусматривает выращивание...
Тип: Изобретение
Номер охранного документа: 0002729410
Дата охранного документа: 06.08.2020
12.04.2023
№223.018.462d

Аппарат для выращивания микроорганизмов

Изобретение относится к микробиологической промышленности, в частности к аппаратам для выращивания микроорганизмов на природном газе. Аппарат для выращивания микроорганизмов содержит корпус, технологические патрубки подачи растворов минеральных солей и титрующих агентов, технологические...
Тип: Изобретение
Номер охранного документа: 0002738849
Дата охранного документа: 17.12.2020
23.05.2023
№223.018.6d2d

Получение гена фосфолипазы а2 с измененным оптимумом рн путем удаления сайтов гликозилирования

Предложена плазмида pPICZaA-PLA2-K4, обеспечивающая биосинтез и секрецию гомогенной дегликозилированной рекомбинантной фосфолипазы А2 Streptomyces violaceoruber с рН оптимумом 6,5. Плазмида имеет размер 3859 п.н. Плазмида содержит модифицированную последовательность гена фосфолипазы А2 с SEQ ID...
Тип: Изобретение
Номер охранного документа: 0002766448
Дата охранного документа: 15.03.2022
30.05.2023
№223.018.744c

Способ получения фумаровой кислоты

Изобретение относится к биотехнологии, в частности к получению гидролизатов измельченных клубней топинамбура. Способ предусматривает сбраживание гидролизата топинамбура, предварительно обработанного в две стадии. Биомассу топинамбура инкубируют в 0,1 М натрий-ацетатном буфере в течение 1 ч при...
Тип: Изобретение
Номер охранного документа: 0002748229
Дата охранного документа: 21.05.2021
16.06.2023
№223.018.79e8

Способ визуализации биологических тканей и/или органов

Изобретение относится к области медицины, а именно к способам получения изображений с помощью оптического просветления биологических тканей и органов и с использованием магниторезонансной томографии. Способ визуализации биологических тканей или органов включает мониторинг диффузии иммерсионного...
Тип: Изобретение
Номер охранного документа: 0002735463
Дата охранного документа: 02.11.2020
Showing 11-16 of 16 items.
13.03.2019
№219.016.ded6

Способ получения гепарина с низкой молекулярной массой и антикоагулянтной активностью

Изобретение относится к области медицины. Предложен способ получения низкомолекулярных гепаринов с помощью ферментативного расщепления. Для ферментной деполимеризации используют лизоцим и в иммобилизованном виде. Полученный низкомолекулярный гепарин обладает увеличенной ингибиторной активностью...
Тип: Изобретение
Номер охранного документа: 0002396282
Дата охранного документа: 10.08.2010
10.04.2019
№219.017.0a14

Препарат, ускоряющий ранозаживление

Изобретение относится к области медицины. Препарат представляет собой раствор низкомолекулярных хитозанов в гидрогеле, содержащем метилцеллюлозу (МЦ-100) и нипагин. Препарат представляет собой диспергированную суспензию наночастиц меди, размер частиц 33.8÷103 нм; толщина оксидной пленки 6÷10 нм...
Тип: Изобретение
Номер охранного документа: 0002460532
Дата охранного документа: 10.09.2012
17.08.2019
№219.017.c138

Иммуноадъювантная композиция для вакцин против инфекционных агентов вирусной и бактериальной природы

Изобретение относится к медицине, а именно к иммунологии, и может быть использовано для получения адъювантной композиции, состоящей из хитозана и олигодезоксинуклеотида. Адъювантная композиция, содержит хитозан с молекулярной массой в диапазоне от 200 до 1000 кДа, степенью деацетилирования от...
Тип: Изобретение
Номер охранного документа: 0002697527
Дата охранного документа: 15.08.2019
23.08.2019
№219.017.c257

Способ получения производных хитозана для визуализации клеточных мембран и создания систем доставки лекарств с повышенной мукоадгезией

Изобретение относится к способу получения производных хитозана, которые могут использоваться для создания носителей для доставки лекарств к эпителиальным клеткам барьерных органов и тканей, а также для получения флуоресцентных проб для маркирования мембран клеток в медицинской и...
Тип: Изобретение
Номер охранного документа: 0002697872
Дата охранного документа: 21.08.2019
31.07.2020
№220.018.3a07

Способ получения ковалентно-связанного хитозан-меланинового комплекса из мухи черная львинка hermetia illucens

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения ковалентного хитозан-меланинового комплекса из подмора мухи черная львинка Hermetia illucens. Сущность предложенного способа заключается в том, что исходная масса подмора обезжиривается диэтиловым...
Тип: Изобретение
Номер охранного документа: 0002728458
Дата охранного документа: 29.07.2020
17.06.2023
№223.018.80fe

Способ получения хитозана из мухи черная львинка hermetia illucens

Описывается способ получения хитозана из личинок мухи черной львинки Hermetia illucens. Изобретение относится к биотехнологии и может быть использовано для получения высокомолекулярного хитозана. Сущность предложенного способа заключается в том, что исходная масса личинок бланшируется и...
Тип: Изобретение
Номер охранного документа: 0002763174
Дата охранного документа: 28.12.2021
+ добавить свой РИД