×
02.10.2019
219.017.d08b

Результат интеллектуальной деятельности: Способ обнаружения шумящих объектов в мелком море

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая обладает направленностью в условиях мелкого моря на любых сколь угодно низких частотах. Способ включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора градиента давления, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора градиента давления, трех компонент вектора колебательной скорости, трех компонент вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале 8-канального статического веера характеристик направленности в горизонтальной плоскости, формирование в каждом частотном канале 2-канального статического веера характеристик направленности в вертикальной плоскости, вычисление для суммарного процесса сигнал плюс помеха и для помехи отдельно 20 компонент, вещественных и мнимых, вектора интенсивности в 10 пространственных каналах, вычисление шести квадратичных компонент для вектора градиента давления, пяти компонент для ротора вектора интенсивности и для квадрата звукового давления, центрирование и нормирование всех 32 информативных параметров, вычисленных для суммарного процесса сигнал плюс помеха, на соответствующие информативные параметры, вычисленные для помехи, после чего вычисляют максимальное отношение сигнал/помеха для одного из 32 информативных параметров, и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного для одного из 32 информативных параметров. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования.

Известен способ обнаружения шумящих в море объектов в фиксированном частотном диапазоне (патент РФ №2298203, МПК G01S 3/80, G01S 15/04, опубликован 27.04.2007 г.), включающий прием шумового сигнала звукового давления в горизонтальной плоскости, при котором осуществляют частотно-временную обработку принятых шумовых сигналов звукового давления для каждого пространственного канала наблюдения в горизонтальной плоскости, квадрируют, усредняют по времени, центрируют и нормируют шумовые сигналы звукового давления к помехе, осуществляют накопление на последовательных циклах обзора принятых нормированных шумовых сигналов звукового давления и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал-помеха, при этом осуществляют прием шумового сигнала звукового давления статическим вертикальным веером одновременно в нескольких направлениях вертикальной плоскости каждого пространственного канала наблюдения в составе статического веера в горизонтальной плоскости, оптимизируют прием каждым горизонтальным пространственным каналом путем выбора наиболее вероятных углов приема в вертикальной плоскости для существующих гидроакустических условий подводного наблюдения. Для этого измеряют волнение поверхности моря, измеряют скорость звука в воде в зависимости от глубины, рассчитывают в каждом вертикальном пространственном канале уровень шумового сигнала на различных расстояниях и глубинах от точки приема по измеренным данным и по известным характеристикам дна, решая уравнение гидроакустики в пассивном режиме для шумящего объекта с заданным уровнем шумоизлучения с учетом характеристик приемной системы, рассчитывают уровень шумов моря в каждом вертикальном пространственном канале с учетом характеристик приемной системы по измеренным данным и известным характеристикам дна. Затем нормируют относительно расчетных шумов моря в вертикальных пространственных каналах расчетные уровни шумовых сигналов в каждом пространственном канале, полученные для заданных расстояний до шумящего объекта и глубин, рассчитывают для каждого расстояния и глубины шумящего объекта в вертикальных пространственных каналах отношение сигнал-помеха. После чего осуществляют обработку принимаемых шумовых сигналов звукового давления с весами, пропорциональными расчетному отношению сигнал-помеха в вертикальных пространственных каналах, перед накоплением на последовательных циклах обзора, и суммируют с расчетными весами принятые нормированные к помехе шумовые сигналы звукового давления вертикальных пространственных каналов. Для реализации данного способа введены новые операции, а именно:

- прием шумовых сигналов звукового давления статическим вертикальным веером одновременно в нескольких направлениях вертикальной плоскости каждого пространственного канала наблюдения в составе веера горизонтальной плоскости,

- оптимизация приема для каждого горизонтального пространственного канала в наклоненных по вертикали веерах путем выбора наиболее вероятных углов приема в существующих гидроакустических условиях наблюдения, для чего осуществляют:

- измерение скорости звука в воде в зависимости от глубины,

- измерение волнения поверхности моря,

- вычисление в каждом вертикально наклоненном пространственном канале уровня шумового сигнала звукового давления на различных расстояниях и глубинах от точки приема по измеренным данным и по известным характеристикам дна,

- вычисление уровня звукового давления для шумов моря в каждом вертикальном пространственном канале с учетом характеристик приемной системы по измеренным данным и по известным характеристикам дна,

- нормирование относительно расчетных шумов моря соответствующих вертикальных пространственных каналов расчетных уровней шумовых сигналов звукового давления в каждом пространственном канале, полученных для заданных расстояний до шумящего объекта и глубин, вычисление для каждого расстояния и глубины шумящего объекта в вертикальных пространственных каналах отношения сигнал-помеха,

- обработку принимаемых шумовых сигналов звукового давления с весами, пропорциональными расчетному отношению сигнал-помеха в вертикальных каналах, до межциклового накопления,

- суммирование с расчетными весами принятых нормированных к помехе шумовых сигналов звукового давления вертикальных пространственных каналов,

- регистрация картины совокупности принимаемых сигналов на выходе приемной системы для которых выполнены указанные выше процедуры.

Недостатком данного способа является малая помехоустойчивость и малая дальность действия приемной системы при работе на низких частотах, когда размер приемной системы соизмерим с длиной волны. В этом случае алгоритмы формирования пространственной направленности становятся неэффективными из-за дисперсионных искажений сигналов.

Известен способ обнаружения шумящих объектов в мелком и глубоком море (патент РФ №2653189, МПК G01S 3/80, G01S 15/04, опубликован 07.05.2018 г.), включающий прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, в котором формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в гидрофоном канале и в векторных каналах комбинированного приемника, вычисляют в каждом частотном канале комплексные амплитуды звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и трех компонент мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха (S+N),

усредняют за заранее определенный временной интервал Т1, значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса (S+N),

выделяют из текущих значений суммарного случайного процесса сигнал плюс помеха текущие значения помехи N,

вычисляют в каждом частотном канале текущие значения комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи N,

усредняют за заранее определенный временной интервал Т1, значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи N,

вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса (S+N),

вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи N,

нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Т1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Т1, вычисленные для помехи N,

нормируют вычисленные за время Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса (S+N) на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи N,

вычисляют максимальное отношение сигнал/помеха из набора 21 информативных параметров, 7 информативных параметров для усредненных за время T1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров для усредненных за время Т2=10 T1 нормированных на помеху значений комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления,

принимают в качестве модельной статистики поля помехи в гидрофоном канале и в каналах вектора колебательной скорости гауссову статистику, принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности лапласову статистику,

вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия,

и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.

Данный способ является наиболее близким к заявленному изобретению и принят за прототип. Недостатком данного способа является малая помехоустойчивость и дальность действия на низких частотах, т.к. он не учитывает вихревую составляющую вектора интенсивности, роль которой возрастает с понижением частоты, а также недостаточная направленность приемной системы в векторных каналах.

Задачей заявляемого способа является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем формирования пространственных каналов комбинированного приемника с одностороннее направленностью, направленность которых не зависит от частоты, и увеличения на его выходе множества информативных параметров во всех сформированных пространственных каналах.

Для решения поставленной задачи в способе обнаружения шумящих объектов в мелком море в фиксированном частотном диапазоне, включающем прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и приемник вектора колебательной скорости, и последующую обработку шумового сигнала, в процессе которой

формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в канале звукового давления и в векторных каналах комбинированного приемника, вычисляют в каждом частотном канале комплексные амплитуды звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и трех компонент мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса (S+N),

усредняют за заранее определенный временной интервал T1, значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса (S+N),

выделяют из текущих значений суммарного случайного процесса (S+N), текущие значения помехи N,

вычисляют в каждом частотном канале текущие значения комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи N,

усредняют за заранее определенный временной интервал Т1, значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи N, вводят новые операции, а именно: формируют с использованием смешанных аддитивно-мультипликативных алгоритмов обработки 8 пространственных каналов в горизонтальной плоскости для горизонтальной компоненты комплексного вектора интенсивности, 2 пространственных канала в вертикальной плоскости для вертикальной компоненты комплексного вектора интенсивности, 4 пространственных канала в горизонтальной плоскости для горизонтальной компоненты ротора вектора интенсивности, 1 пространственный канал в вертикальной плоскости для вертикальной компоненты ротора вектора интенсивности,

вычисляют и усредняют за время T1 в каждом частотном канале квадрат звукового давления, квадраты 3 вещественных компонент вектора градиента давления и квадраты 3 мнимых компонент вектора градиента давления в локальной системе координат, связанной с комбинированным приемником, комплексные амплитуды 10 компонент вектора интенсивности в 10 сформированных пространственных каналах, 5 вещественных амплитуд 5 компонент ротора вектора интенсивности в 5 сформированных пространственных каналах для суммарного процесса (S+N),

вычисляют и усредняют за время Т1 в каждом частотном канале набор из 32 информативных параметров, включающий квадрат звукового давления, квадраты 3 вещественных компонент вектора градиента давления и квадраты 3 мнимых компонент вектора градиента давления в локальной системе координат, связанной с комбинированным приемником, комплексные амплитуды 10 компонент вектора интенсивности в 10 сформированных пространственных каналах, 5 вещественных амплитуд 5 компонент ротора вектора интенсивности в 5 сформированных пространственных каналах для помехи N,

нормируют 32 информативных параметра, усредненные за время Т1, вычисленные для суммарного процесса (S+N), на соответствующие значения 32 информативных параметра, усредненных за время T1, вычисленные для помехи N,

вычисляют в каждом частотном канале максимальное отношение сигнал/помеха для 32 информативных параметров (S/N)T1, усредненных за время T1,

принимают в качестве модельной статистики поля помехи в канале звукового давления и в каналах вектора колебательной скорости гауссову статистику, принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности и ротора вектора интенсивности лапласову статистику, вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия, и

принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 32 информативных параметров.

В предлагаемом способе существенными признаками, общими с прототипом, являются следующие операции:

- используют в качестве приемной системы комбинированный приемник, содержащий приемник звукового давления, трехкомпонентный приемник вектора колебательной скорости,

- формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в векторных каналах комбинированного приемника,

вычисляют в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, текущие значения комплексных амплитуд трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для суммарного процесса (S+N),

усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса (S+N),

- выделяют из текущих значений суммарного случайного процесса сигнал плюс помеха текущие значения помехи N,

вычисляют в каждом частотном канале текущие значения комплексных амплитуд трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи N,

усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи N,

формируют в каждом частотном канале набор информативных параметров, усредненных за время для суммарного процесса (S+N),

формируют в каждом частотном канале набор информативных параметров, усредненных за время для помехи N,

нормируют информативные параметры, вычисленные для суммарного процесса (S+N), на соответствующие информативные параметры, вычисленные для помехи N,

вычисляют максимальное отношение сигнал/помеха из набора информативных параметров,

принимают в качестве модельной статистики поля помехи в канале звукового давления и в каналах вектора колебательной скорости гауссову статистику,

принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности лапласову статистику,

вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия,

принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора информативных параметров.

- Отличительными существенными признаками предлагаемого способа являются следующие операции:

формируют в каждом частотном канале 8 пространственных каналов для горизонтальной компоненты вектора интенсивности и 2 пространственных канала для вертикальной компоненты вектора интенсивности, формируют в каждом частотном канале 5 пространственных каналов для горизонтальной компоненты ротора вектора интенсивности и 1 пространственный канал для вертикальной компоненты ротора вектора интенсивности,

вычисляют в каждом частотном канале во всех сформированных пространственных каналах 32 информативных параметра, усредненных за время Т1, для суммарного процесса (S+N),

вычисляют в каждом частотном канале во всех сформированных пространственных каналах 32 информативных параметра, усредненных за время Т1, для помехи N,

нормируют 32 информативных параметра, усредненные за время Т1, вычисленные для суммарного процесса (S+N), на соответствующие значения 32 информативных параметра, усредненных за время Т1, вычисленные для помехи N,

вычисляют в каждом частотном канале максимальное отношение сигнал/помеха из суммарного набора 32 отношений сигнал-помеха, вычисленных для 32 информативных параметров (S/N), усредненных за время T1,

и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 32 информативных параметров.

Таким образом, именно такая совокупность существенных признаков заявленного способа позволяет сформировать с использованием смешанных алгоритмов аддитивно-мультипликативной обработки множество пространственных каналов, существенно увеличить множество информативных параметров и, соответственно, повысить помехоустойчивость и дальность действия приемной системы.

Новизна предлагаемого способа заключается в том, что в нем с использованием смешанных алгоритмов аддитивно-мультипликативной обработки сигналов сформированы 10 пространственных каналов для вектора интенсивности и 5 пространственных каналов для ротора вектора интенсивности. Это позволило сформировать 32 информативных параметра, усредненных за время Т1, вычисленных отдельно для суммарного процесса (S+N) и для помехи N, и увеличенный набор отношений сигнал-помеха, среди которых выбирается информативный параметр, которому соответствует максимальное отношение сигнал-помеха. Увеличение числа информационных каналов, обладающих направленностью на любых, сколь угодно низких частотах, увеличивает помехоустойчивость комбинированного приемника и дальность действия приемной системы в режиме обнаружения слабых сигналов. При этом в полном наборе информативных параметров для потенциальной составляющей вектора интенсивности, для звукового давления и для градиента звукового давления велико отношение сигнал-помеха в зонах интерференционных максимумов, для вихревой составляющей вектора интенсивности и для ротора вектора интенсивности велико отношение сигнал-помеха в зонах интерференционных минимумов.

Блок-схема, поясняющая заявленный способ обнаружения, приведена на чертеже, где обозначены следующие элементы:

1 - комбинированный приемник,

2 - анализатор спектра суммарного процесса сигнал плюс помеха (S+N),

3 - блок выделения шумовой помехи (N),

4 - блок формирования пространственных каналов,

5 - блок формирования набора М информативных параметров для суммарного процесса (S+N),

6 - блок формирования набора М информативных параметров для шумовой помехи (N),

7 - блок формирования отношения сигнал/помеха по каждому информативному параметру (S/N)m, m=1-M,

8 - компаратор, выбирающий информативный параметр с максимальным отношением (S/N)max,

9 - автоматический обнаружитель порогового типа, устанавливающий пороговое значение отношения (S/N)0,

10 - визуальный обнаружитель (планшет), формирующий сонограмму процесса обнаружения в координатах частота-время наблюдения.

Заявленный способ реализуется следующей последовательностью действий. Сигнал от шумящего объекта принимается комбинированным приемником 1, с выхода которого сигналы звукового давления и компонент вектора градиента давления поступают в блок 2 - анализатора спектра суммарного процесса сигнал плюс помеха (S+N). В этом блоке:

- формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне,

- вычисляют в каждом частотном канале комплексные амплитуды звукового давления, трех компонент вектора градиента давления, в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса (S+N)

где - комплексные амплитуды звукового давления и вектора градиента давления, соответственно,

Вычисленные в блоке 2 сигналы поступают на вход блока 3 выделения шумовой помехи (N) по алгоритму (1)

где f0 - средняя частота канала, Δf0 - заранее определенная полоса усреднения, примерно на порядок превышающая ширину дискретной составляющей Δf в спектре суммарного процесса (S+N), AS+N, AN - любой из перечисленных выше параметров звукового поля, вычисленный для суммарного процесса (S+N) и для помехи N.

Сформированные в блоках 2, 3 сигналы поступают в блоки 4 формирования пространственных каналов, в котором

- вычисляют в каждом частотном канале комплексные амплитуды вектора колебательной скорости и вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса (S+N) и для помехи N по формулам

- вычисляют в каждом частотном канале две горизонтальные компоненты вектора колебательной скорости в повернутой на 45° системе координат (α, β) для суммарного процесса (S+N) и для помехи N по формулам

где комплексные амплитуды спектральных составляющих на частоте со на расстоянии r(t) для компонент вектора колебательной скорости в локальной системе координат (х,у), связанной с приемником, ϕ0 угол поворота,

С выхода блока 4 сигналы поступают в блоки 5, 6 формирования набора усредненных за время T1 информативных параметров, в котором

- вычисляют и усредняют за время T1 компоненты вектора интенсивности Iα, Iβ в повернутой системе координат (α, β) для суммарного процесса (S+N) и для помехи N по формулам

p(ω,r(t)) - комплексная амплитуда спектральной составляющей на частоте ω на расстоянии r(t) для звукового давления,

- вычисляют и усредняют за время T1 для суммарного процесса (S+N) и для помехи N величины

где чувствительность приемника звукового давления и приемника колебательной скорости на частоте ω соответственно, I1x,Ily,I2x,I2y - горизонтальные компоненты вещественной и мнимой составляющих вектора интенсивности в локальной системе координат, связанной с приемником, которым соответствует статический веер характеристик направленности в горизонтальной плоскости вида

где ϕ, θ - азимутальный угол и угол места,

- вычисляют величины

которым соответствует статический веер характеристик направленности в вертикальной плоскости вида

для вещественной и мнимой составляющих вертикальной компоненты вектора интенсивности

- вычисляют вещественные и мнимые составляющие вектора интенсивности во всех 10-пространственных каналах (4), (6) для суммарного процесса (S+N) и для помехи N,

- вычисляют и усредняют за время T1 6 квадратичных компонент вектора градиента давления по формулам

- вычисляют и усредняют за время T1 5 компонент ротора вектора интенсивности и квадрат звукового давления по формулам

С выходов блоков 5, 6 сигналы, сформированные по алгоритмам (3), (5), (7), (8) информативные параметры поступают на вход блока 7 формирования отношения сигнал/помеха (S/N)m по каждому информативному параметру Am (m=1-32). Для этого усредненные за время T1 информативные параметры, сформированные в блоке 5, центрируют и нормируют на соответствующие параметры Am, вычисленные в блоке 6 для помехи N.

При выборе интервала усреднения T1 учитывают, что время усреднения Т1, необходимое для усреднения изотропной составляющей помехи, должно составлять порядка 50-60 с, Сформированные в блока 7 нормированные параметры (S/N)m поступают на вход блока 8 - компаратора, в котором вычисляют максимальное отношение сигнал/помеха по одному из 32 параметров. Вычисленные максимальные значения отношения сигнал/помеха сравниваются с заданным в блоке 9 пороговым значением отношения сигнал/помеха и отображаются в блоке 10, который представляет собой визуальный обнаружитель (планшет), формирующий сонограмму процесса обнаружения в координатах частота-время наблюдения.

Способ обнаружения шумящих объектов в мелком море в фиксированном частотном диапазоне, в котором принимают шумовой сигнал комбинированным приемником, содержащим канал звукового давления и трехкомпонентный приемник вектора колебательной скорости, вычисляют и усредняют за заранее определенный временной интервал T в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексные амплитуды звукового давления, трех компонент вектора колебательной скорости, трех компонент вектора интенсивности для суммарного процесса сигнал плюс помеха (S+N), выделяют из текущих значений суммарного случайного процесса (S+N) текущие значения помехи N, вычисляют и усредняют за заранее определенный временной интервал T комплексные амплитуды звукового давления, трех компонент вектора колебательной скорости, трех компонент вектора интенсивности для помехи N, нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Т, вычисленные для суммарного процесса (S+N), на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Т, вычисленные для помехи N, вычисляют максимальное отношение сигнал/помеха из набора нормированных отношений сигнал-помеха, принимают в качестве модельной статистики поля помехи в канале звукового давления и в каналах вектора колебательной скорости гауссову статистику, принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности лапласову статистику, вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия, принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора нормированных отношений сигнал-помеха, отличающийся тем, что формируют в каждом частотном канале с использованием смешанных аддитивно-мультипликативных алгоритмов обработки 8 пространственных каналов в горизонтальной плоскости для горизонтальной компоненты комплексного вектора интенсивности, 2 пространственных канала в вертикальной плоскости для вертикальной компоненты комплексного вектора интенсивности, 4 пространственных канала в горизонтальной плоскости для горизонтальной компоненты ротора вектора интенсивности, 1 пространственный канал в вертикальной плоскости для вертикальной компоненты ротора вектора интенсивности, вычисляют и усредняют за время T в каждом частотном канале набор из 32 информативных параметров, включающий квадрат звукового давления, квадраты 3 вещественных компонент вектора градиента давления и квадраты 3 мнимых компонент вектора градиента давления в локальной системе координат, связанной с комбинированным приемником, комплексные амплитуды 10 компонент вектора интенсивности в 10 сформированных пространственных каналах, 5 вещественных амплитуд 5 компонент ротора вектора интенсивности в 5 сформированных пространственных каналах для суммарного процесса (S+N), вычисляют и усредняют за время T в каждом частотном канале набор из 32 информативных параметров, включающий квадрат звукового давления, квадраты 3 вещественных компонент вектора градиента давления и квадраты 3 мнимых компонент вектора градиента давления в локальной системе координат, связанной с комбинированным приемником, комплексные амплитуды 10 компонент вектора интенсивности в 10 сформированных пространственных каналах, 5 вещественных амплитуд 5 компонент ротора вектора интенсивности в 5 сформированных пространственных каналах для помехи N, нормируют 32 информативных параметра, усредненные за время Т, вычисленные для суммарного процесса (S+N), на соответствующие значения 32 информативных параметра, усредненных за время Т, вычисленные для помехи N, вычисляют в каждом частотном канале максимальное отношение сигнал/помеха из суммарного набора 32 отношений сигнал-помеха, вычисленных для 32 информативных параметров (S/N), усредненных за время T, принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 32 информативных параметров.
Источник поступления информации: Роспатент

Showing 11-20 of 62 items.
10.04.2015
№216.013.3c78

Комбинированный гидроакустический приемник

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров звукового поля в морской среде с использованием как стационарных, так и подвижных носителей. Достигаемый технический результат - повышение чувствительности пьезоэлектрических элементов гидрофонного...
Тип: Изобретение
Номер охранного документа: 0002546968
Дата охранного документа: 10.04.2015
10.08.2015
№216.013.69f8

Автономный инвертор напряжения для питания нагрузки через трансформатор с низким коэффициентом связи между его обмотками

Изобретение относится к электротехнике, в частности к устройствам для преобразования постоянного тока в переменный. Технический результат - снижение токов автономного инвертора, а также емкости, размеров и массы его входного конденсатора. Автономный инвертор (1) получает входное напряжение от...
Тип: Изобретение
Номер охранного документа: 0002558681
Дата охранного документа: 10.08.2015
27.09.2015
№216.013.7f1c

Устройство для ограничения зарядного тока конденсатора нагрузки

Изобретение относится к электротехнике, а именно к устройствам для ограничения тока заряда конденсатора нагрузки, который, в частности, применяется для фильтрации выходного напряжения источника, предназначенного для питания различных потребителей постоянного тока. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002564137
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7f5a

Устройство для бесконтактной передачи электроэнергии на подводный объект

Изобретение относится к электротехнике, а именно к устройствам для бесконтактной передачи на подводный объект электрической энергии, которая, в частности, применяется для зарядки электрической аккумуляторной батареи, установленной на этом подводном объекте. Устройство содержит установленные на...
Тип: Изобретение
Номер охранного документа: 0002564199
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.8902

Устройство для ограничения зарядного тока конденсатора нагрузки

Изобретение относится к области электротехники и может быть использовано для фильтрации выходного напряжения источника, предназначенного для питания различных потребителей постоянного тока. Технический результат заключается в уменьшении токовых нагрузок на питающий источник напряжения...
Тип: Изобретение
Номер охранного документа: 0002566677
Дата охранного документа: 27.10.2015
27.05.2016
№216.015.433e

Спускоподъемное устройство

Изобретение относится к судовой технике и может быть использовано для спуска, подъема и стабилизации глубины погружения подводных зарядных станций, заряжающих аккумуляторные батареи подводных аппаратов. Спускоподъемное устройство содержит снабженный приводом механизм подъема. Тяговый орган...
Тип: Изобретение
Номер охранного документа: 0002585500
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4a51

Устройство для имитации излучения звука подводным движущимся объектом

Изобретение относится к гидроакустике. Устройство содержит разъемный маслозаполненный подводный цилиндрический корпус с размещенными в нем электродвигателем и механическим драйвером. Источник питания, блок программного управления, размещены в судовом блоке. Нижняя часть подводного корпуса...
Тип: Изобретение
Номер охранного документа: 0002587117
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.58a9

Устройство для ограничения зарядного тока конденсатора нагрузки

Изобретение относится к области электротехники и может быть использовано в устройствах для ограничения тока заряда конденсатора нагрузки, применяемых, в частности, для фильтрации выходного напряжения источника, предназначенного для питания различных потребителей постоянного тока. Технический...
Тип: Изобретение
Номер охранного документа: 0002588051
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6af1

Устройство для подключения управляемого выпрямителя напряжения к источнику напряжения переменного тока

Изобретение относится к области электротехники, в частности к устройствам для преобразования переменного тока в постоянный, и наоборот. Сущность изобретения заключается в том, что в устройстве для подключения управляемого выпрямителя напряжения к источнику напряжения переменного тока,...
Тип: Изобретение
Номер охранного документа: 0002593152
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.80bb

Устройство для зарядки аккумуляторной батареи подводного объекта

Изобретение относится к области электротехники. Устройство для зарядки аккумуляторной батареи размещено в трех конструктивных блоках. В первом блоке, устанавливаемом на судне, находится первый управляемый выпрямитель напряжения. Во втором блоке, выполненном с возможностью погружения под воду,...
Тип: Изобретение
Номер охранного документа: 0002602078
Дата охранного документа: 10.11.2016
Showing 11-20 of 30 items.
19.01.2018
№218.016.0102

Гидроакустический комплекс для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника звука в мелком море

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и...
Тип: Изобретение
Номер охранного документа: 0002629689
Дата охранного документа: 31.08.2017
10.05.2018
№218.016.478a

Способ обнаружения объектов, находящихся в толще донного грунта, и определение их местоположения

Изобретение относится к области гидроакустики и может быть использовано при разработке средств поиска объектов, находящихся на дне под слоем грунта и невидимых для таких гидролокационных средств, как гидролокатор бокового обзора. Техническим результатом является увеличение глубины проникновения...
Тип: Изобретение
Номер охранного документа: 0002650842
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.5139

Способ обнаружения шумящих объектов в мелком и глубоком море

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на...
Тип: Изобретение
Номер охранного документа: 0002653189
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5277

Гидроакустический комплекс для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника звука в мелком море

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и...
Тип: Изобретение
Номер охранного документа: 0002653587
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.52f5

Способ обнаружения шумящих, движущихся в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на...
Тип: Изобретение
Номер охранного документа: 0002653585
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.55c5

Способ обнаружения шумящих в море объектов с помощью комбинированного приемника

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая...
Тип: Изобретение
Номер охранного документа: 0002654335
Дата охранного документа: 17.05.2018
25.08.2018
№218.016.7f9f

Подводный планер для локализации источника звука

Изобретение относится к области устройств для локализации источника звука. Подводный планер содержит крылья, рули, двигатели, аккумуляторную батарею, систему управления. Планер содержит два разнесенных детектора - носовой и кормовой. Каждый детектор прикрыт звукопрозрачным колпаком и...
Тип: Изобретение
Номер охранного документа: 0002664973
Дата охранного документа: 24.08.2018
04.04.2019
№219.016.fc2c

Способ измерения расстояния до контролируемого объекта

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах типа мелкого моря с большими дисперсионными искажениями акустического сигнала. Техническим...
Тип: Изобретение
Номер охранного документа: 0002311663
Дата охранного документа: 27.11.2007
04.04.2019
№219.016.fc2d

Способ измерения расстояния до контролируемого объекта

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах малой глубины (типа мелкого моря) с большими дисперсионными искажениями акустического сигнала....
Тип: Изобретение
Номер охранного документа: 0002311662
Дата охранного документа: 27.11.2007
20.05.2019
№219.017.5c87

Гидроакустический комплекс для обнаружения движущегося подводного источника звука, измерения азимутального угла на источник звука и горизонта источника звука в мелком море

Изобретение относится к океанологии и может быть использовано для гидроакустических исследований. Технический результат - повышение точности определения горизонта источника звука за счет маневра планера по глубине с синхронным измерением максимума ротора вектора интенсивности, повышение...
Тип: Изобретение
Номер охранного документа: 0002687886
Дата охранного документа: 16.05.2019
+ добавить свой РИД