×
02.10.2019
219.017.d065

Результат интеллектуальной деятельности: Солнечный магнитный генератор Стребкова (варианты)

Вид РИД

Изобретение

№ охранного документа
0002700588
Дата охранного документа
18.09.2019
Аннотация: Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. Технический результат – повышение эффективности работы. В солнечном магнитном генераторе ротор выполнен в виде диска из проводящего материала c контактами на оси и ободе диска с осью вращения, содержащей две изолированные друг от друга полуоси ротора. На диске с одной стороны через изолирующий слой закреплен осесимметрично солнечный модуль. Постоянный магнит ротора закреплен на оси ротора осесимметрично с другой стороны диска параллельно плоскости ротора и имеет площадь поверхности, соизмеримую с поверхностью диска. По окружности постоянного магнита ротора с зазором установлены в виде цилиндра соосно с осью ротора одноименными полюсами к оси ротора постоянные магниты статора, плоскости которых перпендикулярны плоскости постоянного магнита ротора. Токовыводы солнечного модуля соединены непосредственно с полуосью ротора и с одним из контактов диска, а полуось ротора и второй контакт к диску соединены через два скользящих контакта генератора с двумя внешними неподвижными проводниками и внешней нагрузкой. 2 н. и 18 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнике, в частности, к электрическим машинам с постоянными магнитами и солнечными модулями.

Известен магнитный генератор Фарадея, содержащий медный диск, который приводится во вращение между полюсами подковообразного магнита и двух скользящих контактов, которые расположены у края диска и около оси вращения. Магнитный генератор Фарадея является обратимой электрической машиной, при подаче напряжения на скользящие контакты магнитный генератор превращается в магнитный двигатель Фарадея (Суханов Л.А., Сафиуллина Р.К., Бобков Ю.А. Электрические униполярные машины. М., ВНИИЭМ, 1964, С. 8-12). Известный магнитный генератор имеет равномерное не изменяющееся во время работы магнитное поле в роторе, что снижает потери на вихревые токи и ЭДС самоиндукции.

Недостатком известного магнитного генератора являются низкая мощность и невозможность его использования в качестве солнечного генератора электрической энергии.

Другим недостатком являются большой ток и низкое напряжение генератора, что приводит к потерям электрической энергии в скользящих контактах и проводах.

Известен солнечный магнитный двигатель Мендосино, содержащий ротор с осью вращения, подшипниками и электрической обмоткой, соединенной с токовыводами солнечного модуля из скоммутированных солнечных элементов с p-n переходами, размещенных на боковой поверхности ротора, а также неподвижный постоянный магнит, плоскость которого параллельна оси ротора. Мотор состоит из ротора многоугольного (обычно квадратного) сечения, насаженного на вал. Ротор имеет два набора обмоток с питанием от солнечных модулей. Вал расположен горизонтально, на каждом его конце находится постоянный кольцевой магнит. Магниты на валу обеспечивают левитацию, так как они находятся над отталкивающими магнитами, расположенными в основании. Дополнительный магнит, находящийся под ротором, создаёт магнитное поле для обмоток ротора. Когда свет падает на один из солнечных модулей, она генерирует электрический ток, который течёт по обмотке ротора. Этот ток создаёт магнитное поле, которое взаимодействует с полем магнита под ротором. Это взаимодействие приводит ротор во вращение. При вращении ротора следующий солнечный модуль перемещается к свету и возбуждает ток во второй обмотке. Процесс повторяется до тех пор, пока на модули падает солнечный свет. Можно провести аналогию с работой коллекторного двигателя постоянного тока: вместо щёточного электрического коллектора в данном двигателе используется «световой коллектор». (Larry Spring’s Magnetic Levitation Mendocino Brushless Solar Motorwww.larryspring.com/sub06_motors.html)

В известном солнечном магнитном генераторе для вращения ротора используется закон электромагнитной индукции Фарадея, электрическая энергия для питания обмоток ротора поступает от солнечного модуля.

Недостатком известного солнечного двигателя является невозможность его использования в качестве генератора электрической энергии.

Другим недостатком известного солнечного магнитного двигателя является низкая мощность из-за затенения ротором 75% площади солнечных модулей, установленных на неосвещаемой поверхности ротора.

Еще одним недостатком является низкий электрический КПД солнечного магнитного двигателя из-за явления самоиндукции в обмотке ротора, которая приводит к торможению ротора при взаимодействии с магнитным полем статора.

Задачей предлагаемого изобретения является повышение мощности, напряжения и эффективности преобразования солнечной энергии в электрическую энергию в солнечном магнитном генераторе.

Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, а также в снижении ЭДС самоиндукции и реакции торможения ротора при взаимодействии с магнитным полем статора.

Технический результат достигается тем, что в солнечном магнитном генераторе, содержащем ротор с осью вращения, подшипниками и электрической обмоткой, соединенной с токовыводами солнечного модуля из скоммутированных солнечных элементов с p-n переходами, размещенных на поверхности ротора, а также постоянный магнит и приводной двигатель, согласно изобретению, ротор выполнен в виде диска из проводящего материала c контактами на оси и ободе диска с осью вращения, содержащей две изолированные друг от друга полуоси ротора, одна из которых соединена с одним из контактов диска, а вторая с одним из токовыводов солнечного модуля, на диске с одной стороны через изолирующий слой закреплен осесимметрично солнечный модуль, постоянный магнит ротора закреплен на оси ротора осесимметрично с другой стороны диска параллельно плоскости ротора и имеет площадь поверхности, соизмеримую с поверхностью диска, по окружности постоянного магнита ротора с зазором установлены в виде цилиндра соосно с осью ротора одноимёнными полюсами к оси ротора постоянные магниты статора, плоскости которых перпендикулярны плоскости постоянного магнита ротора, токовыводы солнечного модуля соединены непосредственно с полуосью ротора и с одним из контактов диска, а полуось ротора и второй контакт к диску соединены через два скользящих контакта генератора с двумя внешними неподвижными проводниками и внешней нагрузкой, а приводной двигатель снабжён устройством контроля оборотов ротора.

В варианте солнечного магнитного генератора токовывод в центре солнечного модуля со стороны диска соединен с центром диска, один скользящий контакт генератора выполнен через полуось ротора, соединенную с центром солнечного модуля со стороны, противоположной диску, а второй скользящий контакт генератора выполнен к ободу диска.

В другом варианте солнечного магнитного генератора токовывод солнечного модуля со стороны диска соединен с ободом диска, а скользящие контакты генератора выполнены через полуось ротора, соединенную с центром солнечного модуля со стороны, противоположной диску, и через полуось ротора, соединенную с центром диска.

В варианте солнечного магнитного генератора ось вращения ротора содержит одну полуось, соединенную с диском, один токовывод солнечного модуля со стороны диска соединен с одним из контактов диска, а второй токовывод в центре солнечного модуля со стороны, противоположной диску, и второй контакт к диску соединены через два скользящих контакта генератора с двумя внешними неподвижными проводниками и внешней нагрузкой.

Еще в одном варианте солнечного магнитного генератора диск ротора выполнен из немагнитного материала, например, из алюминия.

В варианте солнечного магнитного генератора нагрузка выполнена в виде химического аккумулятора электрической энергии или суперконденсатора.

В варианте солнечного магнитного генератора электрические выводы приводного двигателя соединены через устройство контроля оборотов ротора с токовыводами солнечного магнитного генератора.

В варианте солнечного магнитного генератора электрические выводы приводного двигателя соединены через устройство контроля оборотов ротора с отдельным солнечным модулем

В варианте солнечного магнитного генератора приводной двигатель выполнен в виде магнитного двигателя Фарадея.

В варианте солнечного магнитного генератора каждый подшипник ротора выполнен в виде магнитной подвески из двух осесимметричных кольцевых постоянных магнитов с зазором между ними, один из постоянных магнитов закреплен на оси ротора, второй закреплен неподвижно.

Технический результат достигается также тем, что в солнечном магнитном генераторе, содержащем ротор с осью вращения, подшипниками и электрической обмоткой, соединенной с токовыводами солнечного модуля из скоммутированных солнечных элементов с p-n переходами, размещенных на поверхности ротора, а также постоянный магнит и приводной двигатель, согласно изобретению, ротор выполнен в виде диска из проводящего материала с контактами на оси и ободе диска, c осью вращения, содержащей две изолированные друг от друга полуоси ротора, одна из которых соединена с контактом в центре диска, а вторая полуось с одним из токовыводов солнечного модуля, диск состоит из изолированных криволинейных сегментов, соединенных между собой параллельно на оси и на ободе диска, границы между сегментами выполнены в виде логарифмической золотой спирали с координатами

,

где r и θ- радиус вектор и угол радиуса вектора в полярной системе координат;

– параметр золотого сечения;

α – постоянная, определяющая размер спирали и диска,

направления ветвей спирали совпадают с направлением вращения ротора, с одной стороны диска через изолирующий слой закреплен осесимметрично солнечный модуль, постоянный магнит установлен осесимметрично с другой стороны диска и имеет площадь поверхности, соизмеримую с поверхностью диска, по окружности постоянного магнита ротора с зазором установлены в виде цилиндра соосно с осью ротора одноимёнными полюсами к оси ротора постоянные магнита статора, плоскости которых перпендикулярны плоскости постоянного магнита ротора, токовыводы солнечного модуля соединены непосредственно с полуосью ротора и с одним из контактов диска, а вторая полуось ротора и второй контакт к диску соединены через два скользящих контакта генератора с двумя внешними неподвижными проводниками и внешней нагрузкой, а приводной двигатель снабжён устройством контроля оборотов ротора.

В варианте солнечного магнитного генератора токовывод в центре солнечного модуля со стороны диска соединен с центром диска, один скользящий контакт генератора выполнен через полуось ротора, соединенную с центром солнечного модуля со стороны, противоположной диску, а второй скользящий контакт генератора выполнен к ободу диска.

В варианте солнечного магнитного генератора токовывод солнечного модуля со стороны диска соединен с ободом диска, а скользящие контакты генератора выполнены через полуось ротора, соединенную с центром солнечного модуля со стороны, противоположной диску, и через полуось ротора, соединенную с центром диска.

В варианте солнечного магнитного генератора ось вращения ротора с подшипником соединена с диском со стороны, противоположной солнечному модулю, один токовывод солнечного модуля со стороны диска соединен с одним из контактов диска, а второй токовывод в центре солнечного модуля со стороны, противоположной диску, и второй контакт к диску соединены через два скользящих контакта генератора с двумя внешними неподвижными проводниками и внешней нагрузкой.

В варианте солнечного магнитного генератора диск ротора выполнен из немагнитного материала, например, из алюминия.

В варианте солнечного магнитного генератора нагрузка выполнена в виде химического аккумулятора электрической энергии или суперконденсатора.

В варианте солнечного магнитного генератора электрические выводы приводного двигателя соединены через устройство контроля оборотов ротора с токовыводами солнечного магнитного генератора.

В варианте солнечного магнитного генератора электрические выводы приводного двигателя соединены через устройство контроля оборотов ротора с отдельным солнечным модулем.

В варианте солнечного магнитного генератора приводной двигатель выполнен в виде магнитного двигателя Фарадея.

В варианте солнечного магнитного генератора каждый подшипник ротора выполнен в виде магнитной подвески на двух осесимметричных кольцевых постоянных магнитов с зазором между ними, один из постоянных магнитов закреплен на оси ротора, второй закреплен неподвижно.

Солнечный магнитный генератор иллюстрируется на фиг. 1, 2, 3, 4 5, где на фиг. 1 представлена конструкция солнечного магнитного генератора со скользящими контактами к полуоси и ободу дискового ротора, на фиг. 2 – конструкция солнечного магнитного генератора со скользящими контактами к двум полуосям генератора и оси дискового ротора, на фиг. 3 – вид в плане дискового ротора с двумя сегментами, границы которых выполнены в виде золотой логарифмической спирали, на фиг. 4 – вид в плане дискового ротора с четырьмя сегментами, границы которых выполнены в виде золотой логарифмической спирали, на фиг. 5 – солнечный магнитный генератор со скользящими контактами к центральному токовыводу солнечного модуля и к полуоси ротора.

Солнечный магнитный генератор на фиг. 1 содержит ротор 1 в виде диска 2 из проводящего материала, на котором через изолирующий слой 3 закреплен осесимметрично солнечный модуль 4 из скоммутированных солнечных элементов 5. Постоянный магнит 6 установлен осесимметрично со стороны диска 2, не содержащей солнечный модуль 4. Постоянный магнит 6 имеет площадь поверхности, соизмеримую с площадью диска 2.

Токовыводы солнечного модуля 7 со стороны диска 2 соединены с контактом 8 в центре диска 2, а второй токовывод 9 солнечного модуля 7 со стороны, противоположной диску 2, соединен в центре солнечного модуля 7 с полуосью 10 ротора 1 и через первый скользящий контакт 11 с неподвижным проводником 12. Второй скользящий контакт 13 к ободу 14 диска 2 соединен с неподвижным проводником 15. Неподвижные проводники 12 и 15 соединены с нагрузкой 16. Постоянный магнит 6 имеет отверстие 17 в центре с изоляцией 18 относительно второй полуоси 19 ротора 1 и закреплён на полуоси с зазором 20 относительно диска 2. Первая 10 и вторая 19 полуоси ротора 1 выполнены из проводящего материала и соединены между собой изолированной муфтой 21. Каждая полуось 10 и 19 имеет магнитную подвеску 22 из двух осесимметричных кольцевых постоянных магнитов 23 и 24 с зазором 25 между ними, кольцевой постоянный магнит 23 закреплен на полуоси, а кольцевой постоянный магнит 24 закреплен неподвижно на корпусе 26, полуоси 10 и 19 имеют опорные стойки 27 и 28 из проводящего материала. Опорная стойка 27 выполняет функции скользящего контакта 11 к полуоси 10.

По окружности постоянного магнита 6 ротора 1 с зазором 29 установлены в виде цилиндра соосно с осью ротора 1 одноимёнными полюсами к оси ротора 1 постоянные магниты 30 статора, плоскости которых перпендикулярны плоскости постоянного магнита6 ротора 1.

Полуось 19 ротора 1 соединена муфтой 31 с приводным двигателем 32. Электрические выводы 33 приводного двигателя 32 соединены через устройство контроля оборотов 34 ротора 1 с токовыводами солнечного магнитного генератора.

В солнечном магнитном генераторе на фиг. 2 токовывод 7 солнечного модуля 4 со стороны диска 2 соединен с ободом 14 диска 2, скользящий контакт 11 через опорную стойку 27 и первую полуось 10 соединен с центром солнечного модуля 7 аналогично фиг. 1. Второй скользящий контакт 35 соединен через вторую опорную стойку 28 и вторую полуось 19 с центром диска 2 со стороны, противоположной солнечному модулю 4.

На фиг. 3 диск 2 выполнен из двух изолированных криволинейных сегментов 36 и 37, границы между сегментами 36 и 37 выполнены в виде логарифмической золотой спирали 38, 39 с координатами

,

где r и θ- радиус вектор и угол радиуса вектора в полярной системе координат;

– параметр золотого сечения;

α – постоянная, определяющая размер спирали и диска 2,

направления ветвей спирали 38 и 39от оси диска 2 к ободу 14 диска 2 совпадают с направлением вращения ротора 1. Сегменты 36 и 37 соединены между собой параллельно в центре у полуоси 19 диска 2 и на ободе 14 диска 2 за счет того, что границы между сегментами 36 и 37 начинаются на некотором расстоянии от полуоси 19 и центра диска 2 и заканчиваются на некотором расстоянии от обода 14 диска 2.

По окружности постоянного магнита 6 ротора 1 с зазором 29 установлены в виде цилиндра соосно с осью ротора 1 одноимёнными полюсами к оси ротора 1 постоянные магниты 30 статора, плоскости которых перпендикулярны плоскости постоянного магнита6 ротора 1.

Полуось 19 ротора 1 соединена муфтой 31 с приводным двигателем 32. Электрические выводы 33 приводного двигателя 32 соединены через устройство контроля оборотов 34 ротора 1 с отдельным солнечным модулем 38.

На фиг. 4 диск выполнен из четырех криволинейных сегментов 40, 41, 42, 43, изолированных друг от друга границами, выполненных в виде золотых логарифмических спиралей 44, 45, 46 и 47. Сегменты 40, 41, 42, 43 соединены между собой параллельно за счет общих участков диска 2 около оси 19 и около обода 14 диска 2.

На фиг. 5 ось вращения ротора 1 с подшипником 48 соединена с диском 2 со стороны, противоположной солнечному модулю 4. Токовывод 9 генератора 4 соединен через скользящий контакт 49 с внешним неподвижным проводником 12. Токовывод 7 солнечного модуля 4 соединен с ободом 14 диска 2, а центр диска 2 со стороны, противоположной солнечному модулю 4, соединен через полуось 19 со скользящим контактом 35 аналогично фиг. 2. Внешние неподвижные проводники 12 и 15 соединены с нагрузкой 16. Подшипник 48 на полуоси 19 изолирован от корпуса 26 изолирующей прокладкой 50.

Солнечный магнитный генератор работает следующим образом.

При освещении солнечного модуля 4 при наличии внешней нагрузки Rнвольт-амперная характеристика (BАХ) солнечного модуля 4 имеет вид:

,

где V, I – напряжение и ток солнечного модуля при сопротивлении нагрузки Rн;

Iф – фототок;

Iкз - ток короткого замыкания генератора при Rн=0;

Is – темновой ток насыщения;

Rш – сопротивление, шунтирующее p-n переход;

k – постоянная Больцмана;

Т – температура °K;

А – коэффициент, учитывающий отклонение ВАХ от идеальной;

Rн – последовательное сопротивление, включающее внутреннее сопротивление солнечного модуля4, сопротивление скользящих контактов 11 и 13 диска 2 и внешних проводников 12 и 15.

При Rn = 0, V = 0 ток короткого замыкания Iкз=Iф.

В солнечном модуле при малом Rn максимальный ток I при оптимальной нагрузке Rн незначительно, но отличается от тока Iкз:

Это позволяет использовать солнечный модуль 4 для питания внешней нагрузки 16.

При освещении солнечного модуля 4 солнечным излучением между ободом и центром диска 2 через внешние проводники 12 и 15 и сопротивление нагрузки протекает ток I.

При вращении приводного двигателя 32 ось ротора 1, постоянный магнит 6 и диск 2 начинают вращаться. Взаимодействие магнитных полей постоянного магнита 6 ротора 1 и постоянного магнита 30 статора, плоскости которых перпендикулярны друг другу, также приводит к вращению постоянных магнитов 6 и ротора 1. При достижении заданного числа оборотов ротора 1 n0 устройство 34 контроля числа оборотов отключает приводной двигатель 32, и вращение ротора 1 осуществляют за счёт взаимодействия магнитных полей постоянных магнитов 6 ротора 1 и 30 статора.

При вращении ротора 1в магнитном поле постоянного магнита 6 возникает эффект униполярной индукции, и в диске 2 возникает напряжение между центром и ободом 14 диска 2, которое пропорционально произведению числа оборотов на магнитный поток (Электрические униполярные машины. Под ред. Л.А. Суханова. –М.: ВНИЭМ, 1964. – 136 с.)

При вращении диска между центром и ободом диска 2 возникают токи, которые своим магнитным полем усиливают внешнее магнитное поле. Этот результат совершенно противоположен тому, который проявляется в солнечном магнитном двигателе Мендосино, в котором ток в обмотке ротора из-за явления самоиндукции противодействует внешнему магнитному полю.

Направление вращения диска 2 изменяют путем изменения полярности полюсов постоянного магнита 6.

Напряжение солнечного модуля 4 и напряжение на диске 2 складываются при последовательном соединении токовыводов 7 солнечного модуля 4 с контактом 8 в центре диска 2, что приводит к увеличению мощности солнечного магнитного генератора. Ток I солнечного модуля 4 при последовательном соединении равен току в диске 2 ротора 1 и току, протекающему через нагрузку 16, неподвижные проводники 12 и 15 и скользящие контакты 11 и 13.

Разделение диска 2 на сегменты производят путем фрезерования границ сегментов в диске 2 или путем удаления части медного покрытия на границах сегментов на медном покрытии диска из фольгированного стеклотекстолита.

Разделение диска 2 на криволинейные изолированные сегменты с границами в виде логарифмических спиралей золотого сечения увеличивает длину пути носителей тока электронов в направлении движения диска в 5-10 раз по сравнению с радиальным движением тока в неразделенном диске 2, что значительно усиливает внешнее магнитное поле за счет магнитного поля тока в сегментах ротора 1, что приводит к увеличению напряжения и мощности солнечного магнитного генератора.

Пример выполнения солнечного магнитного генератора.

На горизонтальный медный диск 2 диаметром 200 мм толщиной 2 мм (фиг. 2) через слой стеклоткани приклеен солнечный модуль из двух скоммутированных последовательно солнечных элементов 5 из кремния, выполненных из половины диска диаметром 200 мм. Токовывод солнечного модуля 4 со стороны диска 2 соединен с ободом диска 2. Токовывод солнечного модуля 4 на рабочей освещаемой поверхности соединен с верхней вертикальной полуосью 10 из бронзы диаметром 6 мм. Диск 2 в центре соединен с нижней полуосью 19 из бронзы диаметром 6 мм. Постоянный Nd магнит 6 диаметром 200 мм и толщиной 5 мм с центральным отверстием 12 мм закреплён на второй полуоси 19 осесимметрично под диском 2.

По окружности вокруг постоянного магнита 6 с зазором 20 мм установлены 40 постоянных магнитов 30 размером 50 х 20 х 5 мм, обращённых северным полюсом к оси ротора 1.

Полуоси 10 и 19 имеют магнитную подвеску из кольцевых магнитов и скользящие контакты 11 и 13 к торцам полуосей 10 и 19. При стандартном солнечном освещении плотностью потока 1000 Вт/м2 рабочий ток солнечного модуля 4 составляет 5 А, напряжение солнечного модуля 1 В, электрическая мощность 5 Вт, скорость вращения 600 об/мин, напряжение на нагрузке 1,6 В, электрическая мощность солнечного магнитного генератора на нагрузке 8 Вт. В качестве нагрузки 16 использована аккумуляторная батарея.

Токовыводы 33 приводного двигателя 32 соединены через устройство контроля числа оборотов 34 с токовыводами солнечного магнитного генератора.

Преимуществом предлагаемого солнечного магнитного генератора являются круговая симметрия магнитного поля в диске 2 и отсутствие потерь от вихревых токов при вращении ротора 1 в осесимметричном магнитном поле, так как напряженность магнитного поля в роторе, в отличие от прототипа, не изменяется во времени.

По сравнению с прототипом солнечный магнитный генератор создает при взаимодействии магнитных полей ротора и статора вращающий момент на валу и вырабатывает электрическую энергию на нагрузке, то есть выполняет функции двигателя и генератора. При вращении диска 2 между осью 19 и ободом 14 диска 2 появляется напряжение, которое суммируется с напряжением солнечного модуля при надлежащем выборе полярности полюсов магнитов 6 и 30 и направления вращения. В результате увеличиваются электрическая мощность солнечного магнитного генератора и КПД преобразования солнечной энергии.

Источник поступления информации: Роспатент

Showing 11-20 of 272 items.
25.08.2017
№217.015.9747

Подборщик сельскохозяйственных культур

Изобретение относится к области сельскохозяйственного машиностроения. Подборщик содержит раму, на которой смонтированы копирующий рабочий орган с опорными элементами, выполненный в виде подвижной рамки, шарнирно связанной задней частью с рамой, битер с эластичными лопастями, приемный...
Тип: Изобретение
Номер охранного документа: 0002609371
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.a1f3

Устройство и способ изготовления двухстороннего кремниевого матричного солнечного элемента

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, в частности к кремниевым солнечным элементам и технологии их изготовления. Согласно изобретению в кремниевом двухстороннем солнечном элементе, выполненном в виде...
Тип: Изобретение
Номер охранного документа: 0002606794
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3c5

Способ и устройство контроля численности и живой массы поголовья животных в стаде и выявления среди них больных и ослабленных

Группа изобретений относится к сельскому хозяйству. Для учета здоровых животных первый интервал времени отвечает появлению первого животного на проходе к ферме. Сигналы первой и второй временных задержек отвечают периоду поступления ослабленных и больных животных. Животных метят краской первого...
Тип: Изобретение
Номер охранного документа: 0002607347
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a3ef

Способ и устройство для уборки и трёхстадийной очистки клубней топинамбура

Группа изобретений относится к области сельскохозяйственного производства. Способ содержит транспортировку и очистку корнеплодов одновременно с подачей вороха в боковые транспортеры, производят их очистку установленными над ними очистительными элементами в виде щеток. На первой стадии проводят...
Тип: Изобретение
Номер охранного документа: 0002607333
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a405

Способ обработки жидкости ультрафиолетовым излучением с регулируемой толщиной пленки в установках для обработки жидкости в тонком слое

Изобретение относится к пищевой промышленности. Согласно предложенному способу обеззараживание жидкого продукта с регулируемой толщиной пленки и облучением ультрафиолетовым излучением происходит внутри вертикального рабочего цилиндра, где формируется необходимая толщина пленки стекающей...
Тип: Изобретение
Номер охранного документа: 0002607325
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a450

Способ и устройство контроля живой массы и численности поголовья сельскохозяйственных животных

Группа изобретений предназначена для овцеводства и промышленного животноводства. Для контроля живой массы и численности поголовья животных взвешивают группами в клетке устройства. Открывают входные двери прохода и клетки для поступления животных на заданное время. Проход снабжен боковыми...
Тип: Изобретение
Номер охранного документа: 0002607348
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a49a

Устройство повышения эффективности управления технологическим процессом выращивания бройлеров (варианты)

Группа изобретений относится к сельскому хозяйству. Устройство по первому варианту содержит объект управления, блок определения коэффициента сохранности, блок определения средней живой массы птицы по стаду, блок определения коэффициента конверсии корма, блок задания коэффициента...
Тип: Изобретение
Номер охранного документа: 0002607346
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4ce

Бункер-дозатор для подачи порошка и связующего в зону приварки

Изобретение относится к устройствам для смешивания порошков для наплавки и может быть использовано при восстановлении и упрочнении деталей электроконтактной приваркой и другими способами восстановления, в которых применяются наплавочные порошки. Бункер-дозатор содержит бункер для порошка с...
Тип: Изобретение
Номер охранного документа: 0002607678
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a519

Способ упрочнения лемеха плуга

Изобретение может быть использовано для упрочнения рабочих поверхностей почвообрабатывающих орудий сельскохозяйственных машин, эксплуатирующихся в условиях абразивного изнашивания. На поверхность лемеха наносят защитное покрытие за несколько непрерывно повторяющихся циклов путем...
Тип: Изобретение
Номер охранного документа: 0002607680
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5c8

Порошковый питатель для плазменно-порошковой наплавки

Изобретение относится к средствам для плазменной наплавки изделий порошкообразным присадочным материалом, в частности к порошковым питателям плазмотронов или аналогичных устройств. Порошковый питатель содержит корпус с выпускной полостью и дозирующим отверстием, а также элемент перекрытия...
Тип: Изобретение
Номер охранного документа: 0002607679
Дата охранного документа: 10.01.2017
Showing 11-20 of 65 items.
27.01.2015
№216.013.2060

Способ и устройство диагностики мест повреждения кабельных линий электроснабжения

Изобретение относится к области электроэнергетики, в частности к устройствам и технологиям поиска повреждений в сетях передачи электроэнергии, и может быть использовано для диагностики и предварительной локализации мест повреждений подземных кабельных линий электроснабжения до 35 кВ....
Тип: Изобретение
Номер охранного документа: 0002539736
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.2152

Способ приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив и установка для его осуществления

Изобретение относится к технологиям приготовления эмульсий и суспензий на основе многокомпонентных смесей разнородных по своей природе веществ, в частности минерального и растительного происхождения, для использования в качестве топлив смесевого типа, а также в других областях, где требуются...
Тип: Изобретение
Номер охранного документа: 0002539978
Дата охранного документа: 27.01.2015
20.03.2015
№216.013.3269

Способ и устройство для передачи электрической энергии

Изобретение относится к электротехнике, в частности к способам и устройствам для передачи электрической энергии. Технический результат состоит в обеспечении передачи электрической энергии в водной среде, снижении затрат на передачу электроэнергии, а также повышении кпд. Создают резонансные...
Тип: Изобретение
Номер охранного документа: 0002544380
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.39fc

Гибридный фотоэлектрический модуль

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения электричества и тепла. Техническим результатом является повышение эффективности преобразования солнечной энергии, снижение удельных затрат на получение электроэнергии и тепла. В гибридном...
Тип: Изобретение
Номер охранного документа: 0002546332
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42b1

Система для беспроводного электропитания удаленных потребителей электрической энергии по лазерному лучу

Изобретение относится к технике передачи электроэнергии. Технический результат состоит в передаче энергии по воздушному каналу. Для этого устройство содержит передающий и приемный модули электрической энергии Тесла, соединенные между собой лазерной линией резонансной передачи электрической...
Тип: Изобретение
Номер охранного документа: 0002548571
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.574e

Устройство и способ для опреснения морской воды

Изобретение относится к сельскому хозяйству, в частности к способам и оборудованию для опреснения морской воды, и может найти применение при проектировании и создании устройств для получения очищенной пресной воды и использования ее в сельском хозяйстве и других областях народного хозяйства. С...
Тип: Изобретение
Номер охранного документа: 0002553880
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5851

Способ и устройство карботермического получения кремния высокой чистоты

Изобретение относится к области получения кристаллического кремния. Способ включает термическое восстановление кварцитов до элементарного кремния с помощью восстановительной газовой смеси с использованием плазмы, при этом процесс ведут одностадийно во встречных потоках кварцитов и...
Тип: Изобретение
Номер охранного документа: 0002554150
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.587e

Устройство для комбинированной магнитной обработки жидкости

Изобретение относится к устройствам комбинированной магнитной обработки жидкостей. Устройство для комбинированной магнитной обработки жидкости содержит корпус 1, соединенный с трубопроводами подвода и отвода жидкости и установленный внутри него магнитный блок 6 в виде набора постоянных...
Тип: Изобретение
Номер охранного документа: 0002554195
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a8e

Способ и устройство электроснабжения воздушного летательного аппарата (варианты)

Группа изобретений относится к наземным сооружениям для привязных летательных аппаратов. Первый вариант способа электроснабжения воздушного летательного аппарата с удерживающим тросом характеризуется тем, что передачу электроэнергии с земли осуществляют повышенным напряжением 0,1…10 кВ...
Тип: Изобретение
Номер охранного документа: 0002554723
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.647d

Кровельная солнечная панель

Изобретение относится к области строительства, в частности к кровельным солнечным панелям крыш зданий. Технический результат изобретения заключается в снижении расхода материала панели. В кровельной солнечной панели, содержащей корпус с внутренней полостью с защитным покрытием на рабочей...
Тип: Изобретение
Номер охранного документа: 0002557272
Дата охранного документа: 20.07.2015
+ добавить свой РИД