×
02.10.2019
219.017.d00f

Результат интеллектуальной деятельности: АГРЕГАТ И СПОСОБ С ТЕПЛОСИЛОВОЙ УСТАНОВКОЙ И ТЕХНОЛОГИЧЕСКИМ КОМПРЕССОРОМ

Вид РИД

Изобретение

№ охранного документа
0002700115
Дата охранного документа
12.09.2019
Аннотация: Изобретение относится к агрегату с теплосиловой установкой (WKA) и многоступенчатым технологическим компрессором (MSC), причем теплосиловая установка (WKA) включает: насос (РМР), котел (BOI), турбину (TRB) с приводным валом (SD1) или двойным отбором мощности, конденсатор (CND), причем первая рабочая среда (PF1) циркулирует в теплосиловой установке (WKA), причем технологический компрессор (MSC) имеет, по меньшей мере, ступень (ST1.... STn), сжимающую вторую рабочую среду (PF2), и, по меньшей мере, охладитель (IC1…ICn) ниже по потоку технологической ступени (ST1… STn), отбирающей из второй рабочей среды, по меньшей мере, первый поток (QF1…QFn) отводимого тепла, причем приводной вал (SD2) технологического компрессора (MSC) механически состыкован с приводным валом (SD1), за счет чего турбина (TRB) приводит в действие технологический компрессор (MSC). Предложено, что теплосиловая установка (WKA) имеет в потоке первой рабочей среды (PF1) между насосом (РМР) и котлом (BOI), по меньшей мере, нагреватель (РН1…PHn), подающий в первую рабочую среду (PF1) тепловой поток (PRF), причем, по меньшей мере, охладитель (IC1…ICn) соединен, по меньшей мере, обменным трубопроводом (FCC) с теплосиловой установкой (WKA) таким образом, что, по меньшей мере, часть потока отводимого тепла (QF1) поступает между насосом (РМР) и котлом (BOI) в качестве нагретого потока (PRF) в первую рабочую среду (PF1). Также представлен способ эксплуатации агрегата (А) с теплосиловой установкой (WKA) и многоступенчатым технологическим компрессором (MSC). Изобретение позволяет повысить КПД агрегата (А) теплосиловой установки (WKA) и технологического компрессора (MSC). 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к агрегату с теплосиловой установкой и с одно- или многоступенчатым технологическим компрессором, причем тепловая установка включает:

- насос,

- котел,

-турбину, по меньшей мере, с приводным валом,

- конденсатор,

причем первая рабочая текучая среда циркулирует в соединенных по текучей среде между собой элементах – насосе, котле, турбине, конденсаторе, причем технологический компрессор имеет несколько ступеней, сжимающих вторую рабочую текучую среду, причем ниже по потоку технологической ступени или между двумя технологическими ступенями установлено, по меньшей мере, охлаждающее устройство, отбирающее из второй рабочей среды, по меньшей мере, первый тепловой поток, причем технологический компрессор имеет приводной вал, причем приводной вал механически агрегатирован с приводным валом, за счет чего турбина приводит в действие компрессор.

Изобретение относится также к способу эксплуатации агрегата указанного типа.

Из WO 2008/031810 или из WO 2010/069759, или из WO 2010/142574 уже известны компоновки, в которых турбинную установку, в частности паровую турбину, используют для привода компрессора или компрессорной установки, или многоступенчатого компрессора. Во всех этих проектах компоновок КПД всей компоновки всегда имеет большое значение. Сжатие рабочей среды, например воздуха, природного газа или углекислого газа, всегда связано с потерями, причем минимизация этих потерь стоит в центре внимания разработок по повышению КПД.

Из ЕР 2 578 817 А2 известна компоновка, в которой расширитель, работающий на отводимом из процесса сжатия тепле, содействует работе двигателя для привода процесса сжатия.

В основу изобретения положена задача усовершенствования компоновки указанного типа относительно повышения ее КПД.

Для решения задачи данного изобретения предложено усовершенствовать компоновку указанного типа отличительными признаками независимого пункта формулы изобретения, касающегося агрегата. Для решения предложен также способ эксплуатации агрегата. В соответствующих зависимых пунктах формулы раскрыты предпочтительные варианты усовершенствования изобретения.

Решающее преимущество изобретения по сравнению с обычными компоновками или способами их эксплуатации с приводом многоступенчатого технологического компрессора посредством теплосиловой установки состоит в том, что тепло, отводимое из процесса сжатия, подают в теплосиловую установку в качестве полезного тепла, что соответственно обеспечивает возможность снижения объема энергии, необходимого для работы теплосиловой установки. Механическое прямое агрегатирование теплосиловой установки для передачи технической энергии на компрессор, а также дополнительное термодинамическое соединение по данному изобретению охлаждающего устройства, промежуточного охладителя или вторичного охладителя компрессора, с одной стороны, и преднагрев теплосиловой установки перед котлом, с другой стороны, обеспечивает с повышением рабочих характеристик дополнительное преимущество повышенной теплоотдачи охладителей компрессора, что обуславливает также увеличение возможного полезного тепла для работы приводной теплосиловой установки.

Технологический компрессор по данному изобретению – это, как правило, любой одно- или многоступенчатый компрессор с соответствующими охлаждающими устройствами между отдельными ступенями компрессора или с вторичным охладителем. Под ступенями компрессора понимают отдельные рабочие колеса или несколько установленных непосредственно друг за другом рабочих колес. Компрессор принципиально является центробежным компрессором или осевым компрессором, или смешанной компоновкой центробежных ступеней компрессора и осевых ступеней компрессора. Особенно предпочтительно выполнение многоступенчатого компрессора в качестве редукторного компрессора, у которого центральный редуктор приводит в действие несколько зубчатых приводных валов компрессора, несущих рабочие колеса ступеней компрессора. В одном корпусе редуктора установлено, как правило, несколько ступеней компрессора, предпочтительно центробежных, на механическом креплении или опоре.

Теплосиловая установка – это технология циркуляции, известная под названием цикл Клаузиуса-Ранкина (цикл паросиловой установки). Как правило, речь идет о т.н. паровой турбине, а рабочей средой служит, как правило, вода или водяной пар. Альтернативно воде используют также другую, в частности, органическую жидкость, что изменяет рабочую область температур процесса вследствие замены рабочей текучей среды.

Термодинамическое соединение, по меньшей мере, между охладителем процессорного компрессора и, по меньшей мере, нагревателем теплосиловой установки определяет, предпочтительно комбинация охладителя и нагревателя. Комбинация особенно предпочтительна, так как исключает использование дополнительной рабочей среды для передачи тепловой энергии между нагревателем и охладителем. Вторая сжимаемая рабочая среда в комбинированном с нагревателем охладителе напрямую передает полезное тепло первой рабочей среде. В случае паровой турбины с водяным или водопаровым приводом первая рабочая среда особенно пригодна для поглощения тепла, отводимого из второй рабочей среды охладителя или нагревателя.

Изобретение используют предпочтительно также в теплосиловой установке с несколькими нагревателями первой рабочей среды, приводимыми отбором через подсоединения к турбине, или с питающей водой для котла в случае водопаровой турбины. В этом случае можно предпочтительно сократить объем отбора первой рабочей среды из турбины, так как нагрев частично осуществляет тепло, отводимое из охладителя процессорного компрессора. Соответственно турбина выдает более высокую техническую мощность, за счет чего для котла достаточно уменьшенной подача энергии или нагрева.

Другое предпочтительное усовершенствование состоит в наличии в агрегате охлаждающего трубопровода с охлаждающей средой, подключенного, по меньшей мере, к охладителю процессорного компрессора. Это обеспечивает возможность частичной передачи охлаждающей рабочей среде тепла отводимого теплового потока. Это обеспечивает при всех рабочих условиях необходимую низкую последующую температуру на входе ступеней для безопасной и энергоэффективной эксплуатации. Это питание охлаждающей средой комбинируют с питанием охлаждающей средой от теплосиловой установки с несущественным расходом рабочей среды в конденсаторе, что обеспечивает возможность подключения соответствующего питания охлаждающей средой для охлаждения процессорного компрессора. Особенно предпочтительна установка регулирующего устройства, соединенного с регулирующими приспособлениями в трубопроводах охлаждающей среды и, в частности, в обменных трубопроводах между теплосиловой установкой и технологическим компрессором. В частности, во время переменных процессов, например, во время запуска всей компоновки, предпочтительно не обязательное увязывание друг с другом отдельных компонентов агрегата при охлаждении или нагреве, а их максимальное автономное функционирование.

Далее изобретение описано на основе специального примера его осуществления с привлечением фигур, на которых представлено следующее:

фиг. 1, 2 – соответствующие структурные схемы компоновки по данному изобретению или способа по данному изобретению.

На фиг. 1, 2 показаны соответствующие структурные схемы агрегата А или способа по данному изобретению, иллюстрирующие термодинамические взаимосвязи. Использованные условные обозначения идентичны для деталей с одинаковой функцией, а описание фигур относится, если нет иного указания, к обеим фигурам.

Агрегат по данному изобретению включает теплосиловую установку WKA и многоступенчатый технологический компрессор MSC. Теплосиловая установка WKA включает, в свою очередь, насос РМР, котел BOI, турбину TRB с приводным валом SD1 и конденсатор CND. Турбина предпочтительно имеет два приводных хвостовика, т.е. двойной отбор мощности.

Котел BOI работает либо на тепле, отводимом из других процессов, либо на тепле природных энергоносителей. Энергопитание обозначено в виде FUL. Котел BOI испаряет и нагревает первую рабочую среду PF1, циркулирующую в соединенных друг с другом средопроводящих элементах теплосиловой установки WKA. Турбина TRB – это предпочтительно паровая турбина, а первая рабочая среда – это предпочтительно вода или водяной пар. Циркулирующий, нагретый в котле BOI водяной пар теряет в турбине TRB давление и попадает затем в конденсатор CND, где разгруженный пар конденсируется в жидкость, и затем насос РМР поднимает в нем давление до давления котла. Конденсатор CND получает охлаждающую рабочую среду CLF по охлаждающему трубопроводу COL. При этом речь идет предпочтительно о воде, забираемой из естественного водоема и отводимой в него обратно подогретой, или о воде, забираемой из частично искусственного водоема или отводимой обратно с него.

Технологический компрессор MSC имеет одну или несколько ступеней ST1…STn, сжимающих вторую рабочую среду PF2. В данном примере выполнены три ступени — SТ1, ST2, ST3. Технологический компрессор имеет также охладители IC1…ICn или промежуточные охладители, или повторный охладитель, причем в данном примере установлен первый охладитель IC1, второй охладитель IC2 и третий охладитель IC3. В рамках понятий по данному изобретению третий охладитель IC3 – это все равно “охладитель”, если даже за ним не следует дополнительная ступень SТ1…STn для сжатия второй рабочей среды PF2. Решающее значение имеет выведение из процесса сжатия отводимого тепла посредством охладителя. Охладители IC1…ICn подключены к охлаждающему трубопроводу COL, питающему их охлаждающей средой CLF. При этом особенно предпочтителен один и тот же охлаждающий трубопровод COL питания охлаждающей средой CLF для охладителей IC1…ICn и для конденсатора CND.

Технологический компрессор MSC имеет приводной вал SD2, сочлененный муфтой CPL с приводным валом SD1 турбины TRB теплосиловой установки WKA. Таким образом, механическую мощность передают на технологический компрессор MSC, чтобы количество оборотов турбины TRB влияло на количество оборотов технологического компрессора MSC. Вместо муфты CPL применяют также редуктор, передающий на технологический компрессор MSC повышение или понижение количества оборотов турбины. Теплосиловая установка WKA имеет в потоке первой рабочей среды PF1 между насосом РМР и котлом BOI нагреватель PH1…PHn (фиг.2), подающий в рабочую среду соответствующий нагретый поток PRF. На фиг.1 между контуром первой рабочей среды PF1 теплосиловой установки WKA и вторым охладителем IC2 установлено соединение обменным трубопроводом FCC, обеспечивающим подачу первой рабочей среды PF1 в охладитель IC2 и ее отведение обратно в контур теплосиловой установки WKA. При этом первая рабочая среда PF1 получает отведенное тепло из второго охладителя IC2 и подает его в качестве полезного тепла в контур теплосиловой установки WKA. Соответственно в котел BOI поступает меньше энергии FUL Дополнительно, охладитель технологического компрессора MSC суммарно потребляет меньше охлаждающей среды CLF.

Показанная на фиг.2 турбина TRB имеет первое подсоединение ТВ1 и второе подсоединение ТВ2. Оба подсоединения, ТВ1 и ТВ2, подают в третий нагреватель РН3 или во второй нагреватель РН2 соответствующее количество тепла первой рабочей среды PF1, что вызывает более высокую температуру первой рабочей среды PF1 на входе котла BOI. Недостатком является при этом то, что не весь объем поданной в турбину TRB первой рабочей среды PF1 обеспечивает производство технологической работы до выхода из турбины TRB. Предпочтительно перед этим нагревом от двух подсоединений ТВ1, ТВ2 за насосом РМР в контуре первой рабочей среды PF1 установлен указанный обменный трубопровод FCC, подающий отведенное тепло из технологического компрессора в качестве полезного тепла в теплосиловую установку WKA.

Особенно предпочтительно агрегаты А на фиг. 1, 2 включает регулирующее устройство CON. По меньшей мере, обменный трубопровод FCC или охлаждающий трубопровод COL также оснащен регулирующими органами CV1, CV4, соединенными с регулирующим устройством CON. В зависимости от температуры Т второй рабочей среды PF2 между выходом второго охладителя IC2, подключенного к обменному трубопроводу FCC, и входом ступени ST1, STn технологического компрессора MSC ниже по потоку регулирующее устройство CON переставляет регулирующие органы CV1, CV4.

Источник поступления информации: Роспатент

Showing 961-970 of 1,427 items.
29.05.2018
№218.016.5643

Короткозамкнутый ротор и стержень с прорезью

Изобретение относится к короткозамкнутому ротору для электрической машины, включающему в себя пакет сердечника ротора, который имеет паз (6), прилитое на осевом конце (7) пакета сердечника ротора короткозамыкающее кольцо (8), которое имеет материал (108), являющийся алюминием, стержень (9),...
Тип: Изобретение
Номер охранного документа: 0002654523
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.566c

Устройство для коммутации постоянного тока

Изобретение относится к устройству (1) для коммутации постоянного тока, содержащему путь (5) рабочего тока, который содержит механический переключатель (7), путь (15) тока отключения, включенный параллельно пути (5) рабочего тока, который содержит силовой электронный переключатель (17), и...
Тип: Изобретение
Номер охранного документа: 0002654533
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5689

Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии

Изобретение относится к энергетике. Система использует возобновляемую энергию, генерируемую ветряной фермой или другими возобновляемыми источниками энергии. Возобновляемая энергия может быть использована для энергоснабжения местной или национальной энергосети. Согласно настоящему изобретению,...
Тип: Изобретение
Номер охранного документа: 0002654551
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.56e1

Паровая турбина и способ эксплуатации паровой турбины

Изобретение относится к паровой турбине (1) с возможностью охлаждения, в которой из проточного канала отбирается пар, охлаждающий перегородку (16) для компенсации осевой нагрузки и смешивается с небольшим количеством свежего пара и снова подаётся к проточному каналу. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002655068
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5838

Способ и устройство для управления разделением топлива в камере сгорания

Изобретение относится к энергетике. Способ определения установочного значения разделения топлива, используемого для регулировки установочного параметра разделения топлива для камеры сгорания, содержит следующие этапы: вывод первого элемента информации, связанного с теплотворной способностью...
Тип: Изобретение
Номер охранного документа: 0002654809
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.58d8

Высоковольтный проходной изолятор, а также способ его изготовления

Изобретение относится к высоковольтному проходному изолятору (1), включающему в себя расположенное соосно вокруг цилиндрического намоточного основания (2) из проводящего электричество материала изоляционное тело (4), а также уплотнительное устройство для уплотнения зазора между намоточным...
Тип: Изобретение
Номер охранного документа: 0002653498
Дата охранного документа: 10.05.2018
29.05.2018
№218.016.591d

Архитектура безопасности для отказобезопасных систем

Группа изобретений относится к предохранительным устройствам. Защитное устройство отказобезопасных систем управления содержит блок контроля, блок тестирования и выходной каскад, имеющий по меньшей мере один контактный элемент. Блок контроля содержит выходы и сконфигурирован для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002655232
Дата охранного документа: 24.05.2018
29.05.2018
№218.016.59b7

Способ и устройство для отделения отходящих газов при сжигании определенных металлов

Изобретение может быть использовано при создании источников для выработки электроэнергии. Отделение отходящего газа от твердых и/или жидких продуктов реакции проводят при сжигании в газообразном топливе металла, выбранного из группы, включающей щелочные металлы, щелочноземельные металлы, Al и...
Тип: Изобретение
Номер охранного документа: 0002655318
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5a2b

Монтажное устройство и способ монтажа

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного...
Тип: Изобретение
Номер охранного документа: 0002655428
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5a43

Способ и устройство контрения завинченного в резьбовое гнездо резьбового элемента, способ установки, по меньшей мере, одного балансировочного груза турбины и турбина

Изобретение относится к способу контрения завинченного в резьбовое гнездо (2) турбинной установки (29) резьбового элемента (3), выполненного в виде монтажного винта (4). В способе завинченный в резьбовое гнездо (2) балансировочного груза резьбовой элемент (3) пластично деформируют, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002655412
Дата охранного документа: 28.05.2018
+ добавить свой РИД