×
02.10.2019
219.017.cfb6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСПЕРИМЕНТАЛЬНЫМ ПУТЕМ ФУНКЦИИ РАЗМЫТИЯ ТОЧКИ ПРИ ОБРАБОТКЕ ИЗОБРАЖЕНИЙ, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ПРОТОННОГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Использование: для протонной радиографии, в частности для обработки оптических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов. Сущность изобретения заключается в том, что способ по первому варианту включает получение изображения ФРТ, обусловленного системой регистрации, одновременно с изображением ФРТ, обусловленным геометрическим смещением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования. Способ по второму варианту включает получение изображения ФРТ, обусловленного системой регистрации, независимо от получения изображения ФРТ, обусловленного геометрическим смещением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования. В обоих вариантах пропускают протонный пучок через ступенчатый тест-объект или набор тест-объектов различной толщины, подобранной в соответствии с геометрией объекта исследования, при этом выбор перепада толщин тест-объекта осуществляют в зависимости от толщины или толщин разных участков объекта исследования и условия изменения размытия изображения при перепаде массовых толщин в пределах 5-30 г/см. По первому варианту далее по профилям, построенным перпендикулярно ступени, восстанавливают функцию размытия края, функцию размытия линии, полную ФРТ или набор полных ФРТ для разных толщин. Во втором варианте до определения функции размытия края осуществляют деконволюцию полученного цифрового изображения или набора изображений с изображением ФРТ, обусловленным системой регистрации, а полную ФРТ или набор полных ФРТ для разных толщин получают сверткой изображений локальных ФРТ для каждой толщины с изображением ФРТ, обусловленным системой регистрации. Технический результат: повышение достоверности информации при получении ФРТ за счет восстановления полной ФРТ, включающей в себя как первую составляющую размытия, связанную с геометрическим смещением протонов, так и вторую, связанную с регистрирующей системой. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области протонной радиографии, в частности к способам обработки оптических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов.

Задачей, стоящей в рассматриваемой области техники, является получение достоверной информации об исследуемых объектах.

Известны способы получения изображений, сформированных с помощью протонного излучения, например, на ускорителе в BNL (Брукхевен, США) ["THE PROTON RADIOGRAPHY CONCEPT" H.-.J. Ziock, K. J. и др. - LA-UR-98-1368], или в LANL (Лос-Аламос, США) ["A narrow-gap ion chamber for beam motion correction in proton radiography experiments"; L.J. Schultza, и др. - Nuclear Instruments and Methods in Physics Research A 508 (2003) 220-226]. Оба способа включают в себя следующие операции: получение цифровых изображений протонного пучка с помощью систем регистрации до области исследования и после прохождения области исследования в плоскости фокусировки магнитооптической системы. Во втором способе цифровые изображения после прохождения области получают с помощью регистрирующей системы, включающей конвертор, преобразующий протонное излучение в видимый свет (сцинтиллятор), зеркало, оптические линзы и цифровые камеры, а до области исследования - с помощью ионной камеры, сегментированной на 4 квадранта, по которым вычисляется положение центра протонного пучка.

Известен еще один способ [«Протонная радиографическая установка на 70 ГэВ -ом ускорителе ГНЦ ИФВЭ» Ю.М Антипов и др. Препринт 2009-14 ИФВЭ, 2009 г.]. Данный способ включает в себя следующие операции: получение цифровых изображений протонного пучка с помощью систем регистрации до области исследования и после прохождения области исследования в плоскости фокусировки магнитооптической системы, при этом каждая из регистрирующих систем включает конвертор, преобразующий протонное излучение в видимый свет (сцинтиллятор), зеркало, оптические линзы и цифровые камеры.

В протонной радиографии, как и в любой другой радиографии, существует размытие конечного изображения, негативно влияющее на качество протонных изображений. Условно данное размытие в протонной радиографии можно разделить на две составляющие. Первая из них характеризует размытие сигнала в пучке, падающем на систему регистрации. Она обусловлена геометрическим смешением протонов, вызванным, в основном, рассеянием протонов в объектах и окнах взрывозащитных камер (ВЗК), применяемых для защиты оборудования при проведении взрывных экспериментов, и хроматическими аберрациями (зависимости фокусного расстояния магнитооптической системы, формирующей изображение, от импульса протонов), зависящими от объекта исследования и настроек магнитооптической системы. Таким образом, данная составляющая зависит от совокупности факторов: исследуемого объекта, ВЗК и параметров установки, и в каждом эксперименте она, вообще говоря, разная.

Вторая составляющая размытия не зависит от объекта, а связана с регистратором. Данное размытие одинаково для всех экспериментов, и, один раз его измерив, можно учитывать результат измерения для всех снимаемых объектов.

Степень размытия изображений может характеризоваться функцией размытия точки (ФРТ), т.е. откликом системы, строящей изображение, на точечное воздействие.

Известен способ обработки изображений, сформированных с помощью нейтронного излучения ["Neutron СТ enhancement by iterative de-blurring of neutron transmission images" Bert Masschaele et al. Nuclear Instruments and Methods in Physics Research A 542 (2005) 361-366], включающий измерение ФРТ по функции размытия края с последующим применением полученной функции для итеративной деконволюции изображения, то есть восстановления исходного неразмытого изображения. Такой способ повышает качество изображений.

К недостаткам такого решения относится то. что в нейтронной радиографии зависимость ФРТ от объекта невелика и в данном решении оно не учитывается. Учитывается только размытие, вызванное геометрическими размерами источника и системой регистрации, которые от эксперимента к эксперименту не меняются. В протонной радиографии величина размытия, вызванного хроматической аберрацией, зависит от толщины объекта, поэтому она разная для разных объектов. Также, для неоднородных по массовой толщине объектов, данные размытия в разных областях изображения отличаются друг от друга. Еще один фактор, влияющий на размытие, - существенное изменение распределения массовой толщины объекта в динамических экспериментах. К тому же. на степень размытия изображений влияет ВЗК, которая также может меняться от эксперимента к эксперименту.

Известен способ определения экспериментальным путем ФРТ при обработке изображений, сформированных с помощью протонного излучения, уменьшающий размытие, связанное с регистратором [патент RU 2529454, публик. 27.09.14]. ФРТ была экспериментально измерена и успешно используется при обработке протонограмм, существенно повышая точность восстановления массовой толщины. Этот способ выбран в качестве ближайшего аналога. Способ включает вывод и отклонение из протонного пучка части прогонов путем пропускания их через изогнутый каналирующий кристалл, один из торцов которого располагают навстречу потоку протонов, направляя выведенные протоны па конвертор регистрирующей системы, после чего на экспериментально полученном изображении выделяют область локализации выведенных протонов, зависящую от поперечного размера кристалла и его расположения относительно конвертора, а по яркости пикселей выделяют область, формируемую рассеянными фотонами и вторичными частицами, образовавшимися в результате взаимодействия протонов с веществом конвертора, далее из изображения последней области вычисляют размер изображения восстанавливаемой ФРТ в форме квадрата, а затем, варьируя значения пикселей в области локализации прошедших протонов и квадратной области, подбирают совокупность значений пикселей в квадратной области, при которой результат свертки изображений области локализации и квадратной области максимально соответствует экспериментально полученному изображению, данная совокупность и является восстановленной ФРТ.

Недостатком способа является то, что нет восстановления полной ФРТ, что снижает достоверность информации при получении изображений.

Техническим результатом заявляемых способов является повышение достоверности информации при получении ФРТ за счет восстановления полной ФРТ, включающей в себя как первую составляющую размытия, связанную с геометрическим смещением протонов, так и вторую, связанную с регистрирующей системой, описанные выше.

Указанный технический результат достигается за счет того, что в способе определения экспериментальным путем функции размытия точки (ФРТ) при обработке изображений, сформированных с помощью протонного излучения, включающем получение изображения восстановленной ФРТ, обусловленного системой регистрации, новым является то, что изображение ФРТ, обусловленного системой регистрации, получают одновременно с изображением ФРТ, обусловленного геометрическим смещением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования, для чего пропускают протонный пучок через ступенчатый тест-объект или набор тест-объектов различной толщины, подобранной в соответствии с геометрией объекта исследования, при этом выбор перепада толщин тест-объекта осуществляют в зависимости от толщины или толщин разных участков объекта исследования и условия изменения размытия изображения при перепаде массовых толщин в пределах 5-30 г/см2, по профилям, построенным перпендикулярно ступени, восстанавливают функцию размытия края, функцию размытия линии, полную ФРТ или набор полных ФРТ для разных толщин.

Указанный технический результат достигается также за счет того, что в способе определения экспериментальным путем функции размытия точки (ФРТ) при обработке изображений, сформированных с помощью протонного излучения, включающем получение изображения восстановленной ФРТ, обусловленного системой регистрации, новым является то, что дополнительно независимо получают изображение ФРТ, обусловленного геометрическим смещением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования, для чего пропускают протонный пучок через ступенчатый тест-объект или набор тест-объектов различной толщины, подобранной в соответствии с геометрией объекта исследования, при этом выбор перепада толщин тест-объекта осуществляют в зависимости от толщины или толщин разных участков объекта исследования и условия изменения размытия изображения при перепаде его массовых толщин в пределах 5-30 г/см2, осуществляют деконволюцию полученного цифрового изображения или набора изображений с изображением ФРТ, обусловленного системой регистрации, далее по профилям, построенным перпендикулярно ступени, восстанавливают функцию размытия края, функцию размытия линии, ФРТ или набор ФРТ для разных толщин, после чего осуществляют свертку полученных изображений ФРТ с изображением ФРТ, обусловленного системой регистрации и получают полную ФРТ или набор полных ФРТ для разных толщин.

Использование специального ступенчатого тест-объекта, или набора тест-объектов различной толщины обеспечивает получение восстановленных полных ФРТ для набора толщин объекта исследования для конкретной протонной установки и для конкретных условий съемки (тип и диаметр коллиматора, параметры радиографических окон ВЗК). При съемке в данных условиях для каждой точки протонного изображения можно восстановить массовую толщину, прошедшую протонным излучением, а по этой массовой толщине рассчитать локальную ФРТ, которая вместе с ФРТ, обусловленной системой регистрации, обеспечит достоверность информации при проведении исследований.

Выбор условия изменения размытия изображения при перепаде его массовых толщин в пределах 5-30 г/см2 связан с тем, что при энергии притонов 50 Гэв потери энергии на ионизацию должны быть не выше 50 Мэв, что соответствует точности настройки поля магнитной оптики 10-3. Выход за эти пределы уменьшает точность настройки магнитооптической системы.

Если исследуемый объект имеет однородную массовую толщину, и величина размытия, вызванного хроматической аберрацией, не сильно меняется по полю обзора, то в этом случае можно ограничиться съемкой всего одного тест-объекта с толщиной, определяемой толщиной объекта, получением одной ФРТ и восстановлением изображения простыми алгоритмами (например. Люси-Ричардсона). Это позволит существенно повысить пространственное разрешение в протонной радиографии.

На фиг. 1 приведена схема объекта исследования. На фиг. 2 - протонная радиограмма объекта исследования без учета ФРТ. На фиг. 3 - профили протонной радиограммы с фиг. 2. На фиг. 4 - схема тест-объекта для получения полной ФРТ.

В качестве примера конкретной реализации устройства, позволяющего осуществить заявляемый способ, может служить радиографический комплекс, который выполнен на основе действующего синхрофазотрона У-70, построенного в г. Протвино [Новости и проблемы фундаментальной физики. №1(5). 2009 г., с. 32-42]. и включает камеру для размещения объекта исследования, систему формирования и регистрации протонного изображения. Система формирования представляет собой магнитооптическую систему, состоящую из магнитных линз и коллиматора. Система регистрации состоит из сцинтилляционного конвертера, зеркала и цифровых камер. На фиг. 1 представлена схема разнотолщинного объекта исследования. Для проведения измерений использовались свинцовые тест-объекты, схематично каждый из которых представлен на фиг. 4. Толщина Н тест-объекта составляет, например, 10, 30, 50, 70, 90 и 110% от толщины исследуемого объекта. Перепад по толщине ΔН выбирается из тех соображений, чтобы величина размытия, обусловленного хроматической аберрацией, не сильно менялась при перепаде массовых толщин в пределах 5-30 г/см2 (например, для свинца ~20 мм). Минимальная ширина данных объектов L выбирается исходя из условия того, чтобы она была существенно больше характерных размеров размытия (например L>20 мм).

Для пояснения способа определения экспериментальным путем ФРТ при обработке изображений, сформированных с помощью протонного излучения, приводим результат радиографирования объекта исследования на фоне пластин из капролона и алюминия. Результат экспериментального протонного радиографирования представлен на фиг. 2, а на фиг. 3 изображены профили данной радиограммы вдоль отрезков 1, 2 и 3. По этим профилям видно, что совокупное размытие изображения составляет от 1.5 до 3 мм, причем размытие для каждой пары граней отличается друг от друга, что препятствует восстановлению исходного неразмытого изображения стандартными методами.

Способ определения экспериментальным путем ФРТ при обработке изображений, сформированных с помощью протонного излучения, по первому варианту.

Для того, чтобы восстановить исходное неразмытое изображение объекта исследования, можно экспериментально восстановить полную ФРТ или набор полных ФРТ для разных толщин, а затем методом решения обратных задач провести деконволюцию с учетом того, что в каждой точке ФРТ меняется. Для получения изображение ФРТ, обусловленного системой регистрации, одновременно с изображением ФРТ, обусловленного геометрическим смешением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования, тест-объекты радиографируют в тех же условиях, что и исследуемый объект (с теми же пластинами капролона и алюминия). Затем по профилям, построенным перпендикулярно ступени (фиг. 4), восстанавливают функцию размытия края, функцию размытия линии, по которым восстанавливают полную ФРТ для данной массовой толщины вещества тест-объекта. Таким образом получают набор полных ФРТ для всех толщин тест-объектов. ФРТ для промежуточных значений толщины объекта исследования получают, например, путем линейной интерполяции из набора восстановленных ФРТ. Затем, методами решения обратных задач, как, например, в [Saima Ben Hadj, Laure Blanc-Feraud. ''Restoration Method for Spatially Variant Blurred Images". [Research Report] RR-7654, INRIA. 2011.], или в ["Spatially Variant Deconvolution in Low Dose X-Ray Imaging" MASTER'S THESIS of Johannes Lotz - November 2011, Institute of Mathematics and Image Computing University of and Department of Mathematics and Computer Science Emory University], или используя более универсальные методы решения обратных задач (такие, как алгебраическая реконструкция) можно восстановить исходное неразмытое протонное изображение объекта исследования.

Способ определения экспериментальным путем ФРТ при обработке изображений, сформированных с помощью протонного излучения, по второму варианту.

При восстановлении полной ФРТ, описывающей совокупность размытия, вызванного системой регистрации с одной стороны и хроматическими аберрациями и радиографическими окнами с другой, можно идти поэтапно. Так как оба данных размытия независимы, то сначала можно устранить размытие, вызванное системой регистрации (например, по методу, описанному в ближайшем аналоге [патент №2529454. приоритет от 30.04.13]). Далее получают изображения ФРТ, обусловленного геометрическим смещением протонов, зависящим от объекта исследования, параметров установки, защитного оборудования, для чего пропускают протонный пучок через набор тест-объектов различной толщины (фиг. 4). Далее осуществляют деконволюцию полученного набора изображений с изображением ФРТ, обусловленного системой регистрации. По профилям, построенным перпендикулярно ступени, восстанавливают функцию размытия края, функцию размытия линии, ФРТ, таким образом получают изображения ФРТ или набор изображений ФРТ для разных толщин тест-объектов, после чего осуществляют свертку этих изображений с изображением ФРГ, обусловленного системой регистрации и получают полные ФРТ для разных толщин. Далее для каждой точки изображения восстанавливают массовую толщину исследуемого объекта, прошедшую протонным излучением, а по этой массовой толщине рассчитывают локальную ФРТ для каждой толшины объекта исследования, например, линейной интерполяцией ФРТ из полученного набора аналогично описанному в первом варианте.

Т.о. заявляемый способ позволяет повысить качество и точность обработки зарегистрированных протонных изображений.

Источник поступления информации: Роспатент

Showing 91-100 of 796 items.
13.01.2017
№217.015.69bf

Способ приведения в действие инициатора газодинамического импульсного устройства

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта. Обнаружение осуществляется с помощью датчика, реагирующего на сближение с...
Тип: Изобретение
Номер охранного документа: 0002591293
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6ba3

Способ создания сквозных микроканалов с диаметрами микронных и субмикронных размеров в кристалле кремния с помощью лазерных импульсов

Использование: для создания сквозных микро- и субмикронных каналов в кристалле кремния. Сущность изобретения заключается в том, что способ создания сквозных микроканалов с диаметрами микронных и субмикронных размеров в кристалле кремния с помощью лазерных импульсов заключается в прошивке...
Тип: Изобретение
Номер охранного документа: 0002592732
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cee

Способ определения наличия подрыва заряда взрывчатого вещества, содержащегося в объекте испытания, и задержки его подрыва от момента контакта объекта испытания с преградой и устройство для его осуществления

Изобретения относятся к области испытательной и измерительной техники. Способ включает регистрацию оптического излучения в спектре чувствительности фотодиода, сопровождающего инициирование заряда взрывчатого вещества (ВВ), находящегося в объекте испытания (ОИ). Регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002597034
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d77

Способ регистрации радиографических изображений, сформированных с помощью ионизирующего излучения

Изобретение используется для регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, относится к области радиографии, в частности к способам регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано,...
Тип: Изобретение
Номер охранного документа: 0002597026
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e2d

Устройство юстировки оправы оптического элемента

Изобретение относится к области лазерной техники и касается устройства юстировки оправы оптического элемента. Устройство содержит закрепленный на кронштейне корпус, в отверстии которого установлен оптический элемент, фиксирующие элементы, фиксатор юстировки и пружину. В корпусе выполнены...
Тип: Изобретение
Номер охранного документа: 0002596906
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e76

Устройство формирования объемного разряда

Использование: для формирования объемного самостоятельного разряда в электроразрядных импульсно-периодических газовых лазерах. Сущность изобретения заключается в том, что устройство формирования объемного разряда включает разрядную камеру с рабочим газом, по меньшей мере, с одной электродной...
Тип: Изобретение
Номер охранного документа: 0002596908
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7068

Поглотитель водорода

Изобретение относится к области химии. Поглотитель водорода размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Обеспечивают окисление содержащегося в смеси водорода на палладиевом катализаторе 4. Образующиеся пары воды проникают через мембрану 5...
Тип: Изобретение
Номер охранного документа: 0002596258
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71aa

Способ доставки взрывозащитной камеры к месту проведения опыта и транспортно-юстировочный комплекс для его осуществления

Изобретение относится к транспорту и предназначено для перемещения и позиционирования крупногабаритных объектов, в частности взрывозащитных камер (ВЗК). Способ доставки ВЗК к месту проведения опыта включает размещение и закрепление последней на транспортном устройстве (1) и перемещение...
Тип: Изобретение
Номер охранного документа: 0002596858
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71c9

Способ испытаний боеприпасов

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке новых образцов боеприпасов. Способ включает механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных...
Тип: Изобретение
Номер охранного документа: 0002596552
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73f5

Способ измерения интегральной излучательной способности с помощью прямого лазерного нагрева (варианты)

Изобретение относится к измерительной технике. Способ измерения интегральной излучательной способности заключается в закреплении эталонного образца в виде абсолютно черного тела (АЧТ) и в отдельной вакуумной камере исследуемого образца твердого тела, нагревании эталонного образца указанного...
Тип: Изобретение
Номер охранного документа: 0002597937
Дата охранного документа: 20.09.2016
Showing 11-13 of 13 items.
12.12.2019
№219.017.ec56

Способ настройки магнитооптической системы протонографического комплекса

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют пропускание пучка протонов через объектную плоскость магнитооптической системы, включающей магнитные линзы и коллиматор, с последующим получением с...
Тип: Изобретение
Номер охранного документа: 0002708541
Дата охранного документа: 09.12.2019
04.06.2020
№220.018.23d1

Способ получения и обработки изображений, сформированных с помощью протонного излучения

Изобретение относится к области протонной радиографии, в частности к способам обработки изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих...
Тип: Изобретение
Номер охранного документа: 0002722620
Дата охранного документа: 02.06.2020
24.07.2020
№220.018.371c

Способ настройки магнитооптической системы протонографического комплекса (варианты)

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют подбор оптимального диаметра входящего в магнитооптическую систему коллиматора с точки зрения получения максимальной контрастной чувствительности...
Тип: Изобретение
Номер охранного документа: 0002727326
Дата охранного документа: 21.07.2020
+ добавить свой РИД