×
02.10.2019
219.017.cf55

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОСУЩЕСТВЛЕНИЯ ПРОЦЕССА АЛКИЛИРОВАНИЯ ПАРАФИНОВ ОЛЕФИНАМИ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к способу получения катализатора процесса алкилирования парафинов олефинами, включающему в себя деактивацию его кислотных центров, причем в качестве катализатора используют кристаллический цеолит в водородной форме, деактивацию проводят путем его обработки в условиях алкилирования смесью парафинов С-С и олефинов С-С, содержащей до 5% олефинов С-С и 95% изопарафиновых углеводородов, до момента, пока на выходе реактора не появляются непрореагировавшие олефины, с последующей обработкой цеолита растворами солей щелочных или щелочно-земельных металлов и высокотемпературной обработкой в окислительной среде. Технический результат - получение эффективного кристаллического цеолитного катализатора с повышенным содержанием сильных кислотных центров Бренстеда как на внешней поверхности, так и внутри цеолитного каркаса, способного увеличить стабильность и селективность по разветвленным высокооктановым парафинам. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области нефтепереработки и нефтехимии, а именно к технологии производства катализаторов для осуществления процесса алкилирования изобутана и изопентана олефинами С3-С4 (пропиленом, бутенами и амиленами), точнее к способам получения цеолитов с увеличенной долей сильных кислотных центров Бренстеда.

Особенность процесса алкилирования парафинов является возможность получения бензина, который по существу не содержит загрязняющих примесей, таких как сера и азот, которые могут присутствовать в бензине, производимом другими способами, такими как крекинг тяжелых нефтяных фракций, например, вакуумном газойле и продуктах атмосферной отгонки. Получаемые при этом изопарафины (алкилбензин, алкилат), характеризуются следующими основными показателями:

- высокие октановые числа - 93÷94 моторным методом, 96÷99 исследовательским методом;

- не содержат ароматических и непредельных углеводородов, сернистых и кислородсодержащих соединений;

- имеют ровную характеристику октановых чисел по температурам кипения в области 40÷200°С.

Такие показатели позволяют считать их ценным компонентом автомобильного топлива, учитывая мировую тенденцию снижения содержания ароматических углеводородов в составе бензина (RU 2482917, 1913).

Реакция алкилирования является кислотно катализируемой Эффективность процесса алкилирования во многом зависит от природы используемого катализатора. Ранее в процессах алкилирования, как правило, использовались жидкие кислотные катализаторы, такие как серная кислота или фтористоводородная (плавиковая) кислота. Однако применение жидких кислотных катализаторов имеет несколько недостатков. Использованные жидкие кислоты являются высококоррозивными, требуя применения более дорогостоящего оборудования специального качества. При этом, так как присутствие этих кислот в конечном топливе нежелательно, любая кислота, остающаяся в алкилате, должна быть удалена, что делает процесс сложным и дорогостоящим (RU 2419486, 2010). Чтобы устранить эти и прочие недостатки жидких кислотных катализаторов, для применения в процессах алкилирования были разработаны твердые кислотные катализаторы, содержащие кислотный носитель, в частности, цеолит и металл, который выполняет функцию гидрирования, в качестве которого обычно используют элементы из 8-10 группы периодической таблицы, такие как платина, палладий или их смеси. (US 7459412; US 20030181779; WO 2012047274, RU 2419486, RU 2482917, 1913; US 5986158, RU 2445165C1, WO 2005077866, US 20080087574 и др.).

Для повышения селективности и стабильности алкилата цеолитные катализаторы алкилирования подвергают одно или многостадийной процедуре ионного обмена промотируя, тем самым, катализатор металлами или их оксидами. Чаще в качестве промотера выступают редкоземельные металлы, среди которых наибольше распростанен лантан, а также цинк, галлий, железо, магний, кобальт, молибден.

Так, известен способ получения катализатора для алкилирования изобутана олефинами С2÷K4 с использованием фожазита (SU 1309383, 1996). Катализатор имеет следующий состав, мас. %: оксид натрия 0,26-0,8; оксид редкоземельного элемента 12,0-20,0; оксид кальция 0,8-4,2; оксид платины или палладия 0,02-1,2; оксид алюминия и диоксида кремния - остальное. Способ получения включает в себя обработку цеолита водным раствором промышленной смеси редкоземельных элементов, формование, обработку растворами нитрата аммония и соли палладия, сушку и прокалку. Испытание катализатора при алкилировании изобутана этиленом при 90°С, скорости подачи сырья 1,3 ч-1 показывает выход алкилата 19÷210 мас. %.

Недостатком предлагаемого способа является невысокая селективность катализатора по целевому продукту Σизо-С8 (суммарным изооктанам) - 67,4 мас. % при алкилировании изобутана олефинами, в частности бутенами.

Известен способ получения катализатора для получения алкилатов, представляющего собой цеолит Y с мольным отношением SiO2/Al2O3=4,5-5, в котором катионы натрия замещены на катионы NH4+ до степени обмена 95% и ионы редкоземельных элементов до 60% от обменной емкости, включающий контакт цеолита с водными растворами солей поливалентных металлов, сушку, формование с добавлением связующего (US 3549557). Алкилирование изобутана бутеном-1 с соотношением в реакционной смеси 20:1 проводили при весовой скорости подачи по олефину 0,05 ч-1, температуре 38°С и давлении 34 атм. За 6 часов работы получают алкилат со сравнительно высоким выходом - 185%, считая на бутен-1. Содержание фракции C8 в алкилате составляло около 70%, а содержание триметилпентанов в ней - около 80%.

Недостатком такого способа является сравнительно высокий расход редкоземельных элементов для проведения ионного обмена цеолита, а также н низкая нагрузка по олефинам и невысокая стабильность его работы: уже после 5-6 часов работы содержание непредельных соединений в алкилате составляет 10-20%.

Основная проблема при использовании твердых кислотных катализаторов состоит в том, что катализатор может становиться быстро дезактивируемым вследствие образования полиалкилатов (например, продуктов С12+), которые ингибируют реакции алкилирования - в некотором отношении подобно очень мягкому коксу. Как только катализатор сформирует определенный уровень содержания полиалкилатов, катализатор по существу прекращает реакции алкилирования. Эта дезактивация катализатора приводит к необходимости периодической регенерации катализатора для обеспечения удовлетворительного выхода целевого продукта, что снижает производительность процесса и повышает затраты в процессе алкилирования.

Из уровня техники известны способы получения цеолитов с дезактивированной поверхностью, повышающей его эксплуатвционные характеристики. Известен способ получения цеолита ZSM-5, включающий его модификацию кремнийорганическими соединениями в газовой фазе. Способ включает обработку цеолита парами кремнийорганического соединения, содержащего, по крайней мере, два атома кремния. Полученный модифицированный цеолит рекомендован для превращения ароматических углеводородов в продукты, содержащие пара-изомеры диалкилбензолов (US 5516736).

Известен способ модифицирования цеолита MFI, который предварительно кальцинируют, затем модифицируют раствором кремнийорганического соединения в органическом растворителе, после чего смешивают со связующим агентом и подвергают гранулированию. Цеолит рекомендован для использования в процессах конверсии углеводородов при получении пара-ксилола (US 6066770).

Известен способ (RU 2124944, 1999) модификации формоселективности цеолитного катализатора на основе отделочной селективации включающей в себя контактирование модифицированного цеолита с разлагающимся при нагреве органическим соединением при температуре, превышающей температуру разложения разлагающегося для повышения селективности по п-ксилолу приконверсии алкилароматических соединений.

Наиболее близким по технической сущности и достигаемому результату является способ (RU 2555879, 2015) получения цеолита типа ZSM-5 (MFI) с дезактивированными кислотными центрами,

располагающимися на внешней поверхности цеолитных кристаллов путем обработки исходного цеолита раствором тетраэтилортосиликата или полиметилсилоксана в органическом растворителе и кальцинированием обработанного цеолита Полученный катализатор обеспечивает возможность производства автомобильного бензина в процессе димеризации бутан-бутиленовой фракции при температурах 300-450°С. При этом достигается высокая стабильность работы катализатора во времени.

В качестве недостатка указанного способа можно отметить недостаточную селективность процесса в связи с невозможностью влияния на побочные активные кислотные центры, распологающиеся внутри микропор цеолита, отвечающие за протекание побочных реакций.

Задача настоящего изобретения заключается в разработке технологии получения более эффективного катализатора, способного увеличить стабильность и селективность по разветвленным высокооктановым парафинам.

Задача решалась разработкой цеолитного катализатора с низким содержанием нецелевых активных центров, ускоряющих побочные реакции.

В основу изобретения были положены наблюдение авторов, что дезактивированные катализаторы все еще проявляли высокую активность в побочных превращениях, ведущих к образованию низкооктановых малоразветвленых парафинов и продуктов димеризации - олефиновых углеводородов С5+. При этом анализы функционального состава кислотных центров отработанных катализаторов показывали полное отсутсвие целевых сильных Бренстедовских кислотных центров, которые дезактивируется сорбированными высокомолекулярными углеводородами, и присутсвие только побочных слабых и сильных кислотных центров. То есть можно было предположить, что на дезактивированных катализаторах имеется возможность воздействовать только на нецелевые кислотные центры, сохраняя возможность востановления целевых центров методом окислительной регенерации.

В связи с этим технической задачей являлоссь создание способа получения цеолита с повышенным содержанием только сильных кислотных центров Бренстеда как на внешней поверхности, так и внутри цеолитного каркаса.

Технический результат достигался последовательной деактивацией сильных Бренстедовских центров протонной формы цеолита в среде олефиновых углеводородов; проведением ионного обмена в растворе щелочного или щелочноземельного металла; окислительной высокотемпературной обработкой.

В качестве цеолита используют, как правило, цеолит Y в виде порошка или гранулы. При этом наиболее предпочтительно является использование порошка с размером кристалов менее 30 мкм с его последующим формованием, что позволяет получить «селективированный» катализатор алкилирования изопарафинов олефинами С35.

Деактивацию сильных кислотных центров Бренстеда осуществляют обработкой цеолита в условиях алкилирования смесью парафинов С45 и олефинов С25, содержащая до 15% олефинов С25 и до 70% изопарафиновых углеводородов. При этом в реакторе одновременно происходят реакции алкилирования, димеризации, изомеризации и олигомеризации в, ходе которой сильные кислотные центры подвергаются дезактивиции за счет адсорбции на них высокомолекулярных углеводородов, образующихся в условиях контакта цеолита с олефинсодержащей смесью углеводородов. Процесс проводят до тех, пока на выходе реактора не появляются непрореагировавшие олефины. Их появление в количестве более 0.1% масс свидетельствует о полной дезактивации сильных кислотных центров Бренстеда.

Процесс проводят с использованием реактора смешения (автоклава) или реактора со станционарным слоем, при этом последнее является предпочтительным. В качестве олефинов более предпочтительными являются бутены, среди которых наиболее предпочтителен изобутилен, который характеризуется высокой реакционной способностью. В качестве изопарафинов могут выступать изобутан и изопентан.

Оптимально после прекращения подачи олефинсодержащих углеводородов проводить термообработку цеолита. Для этого цеолит отделяют от реакционной смеси и подвергают нагреванию до температуры 250-450°С в условиях атмосферного или избыточного давления (от 1 до 5 МПа) в течении от 10 минут до 24-х часов. При этом происходит конверсия адсорбированных высокомолекуляных углеводородов с образованием ациклических, алкилароматических и полиароматических соединенней (кокса), которые более прочно связываются с активными центрами, тем самым предотвращая их удаление на следующих стадиях процесса. Термообработка не является ключевой и может быть исключена из процесса модификации цеолита.

После деактивации цеолитный материал подвергается обработке растворами солей щелочных или щелочноземельных металлов с целью проведения ионного обмена в слабых кислотных центрах - замещения ионов водорода катионами металлов. При этом сильные кислотные центры Бренстеда «закрыты» высокомолекулярными углеводородными отложениями и воздействию практически не подвергаются. Используемый раствор, содержит, например, NaNO3, Na2SO4, CaSO4, NaCl, CaCl2 в концентрации от 0.5% до 35%, при этом предпочтительным является концентрация 1% и использование составлять быть. Температура обработки от 20°С до 100°С, (более предпочтительно 50°С, время обработки от 20 минут до 10-ти часов в зависимости от выбранной концентрации раствора и количества повторений процедуры обработки.

После окончания ионного обмена выполняется фильтрация и промывка цеолитного материала водой для извлечения солей металлов с последующей сушкой в течении не менее 24 часов.

Полученный цеолитный материал подвергается высокотемпературной обработке (прокалке) в окислительной среде, которой может быть атмосферный воздух или его смесь с инертными газами с целью удалению с активной поверхности катализатора высокомолекулярных углеводородных отложений и кокса. Прокалка ведется при температуре от 450°С до 700°С в течение не менее 3 часов. При этом сильные кислотные центры Бренстеда становятся активными в целевой реакции алкилирования, а ускоряющие побочные реакции слабые/средние Бренстедовские и Льюисовские кислотные центры, приводящие к снижению селективности и стабильности катализатора алкилирования, остаются в связанном виде с металлами.

Сущность и особенности заявленного процесса модифицирования цеолита и результаты по его использованию в качестве катализатора алкилирования изобутана олефинами С4 иллюстрируются следующими примерами. Пример 1. В качестве исходного цеолита использовали натриевую форму цеолита Y с модулем (SiO2/Al2O5=5.1) и содержанием Na2O 13%. Водородную форму цеолита Y получали путем ионного обмена с раствором хлорида аммония. Для приготовления 10 г катализатора, брали навеску порошка NH4Cl с массой 42.8 г добавляли в 200 мл воды. Затем 10 г цеолита пересыпали в раствор хлорида аммония и перемешивали в течение 2 часов при 70°С. После оставляли при комнатной температуре на ночь. Далее цеолит отфильтровывали и промывали. Сушку производили при 110°С в течение 3 часов, затем образец прокаливали в муфеле при 525°С 3 часа.

Полученный катализатор помещали в проточный реактор, продували азотом при температуре 350°С и давлении 1,7 МПа, затем при температуре 80°С начинали подачу олефинового сырья, содержащего 4,8% изобутилена, 95% изобутана и 0,2% н-бутана. Массовая скорость подачи олефинов 0,2 ч-1. По истечении 210 минут подачу олефинового сырья останавливали и выполняли продувку реактора азотом и последующее нагревание до 350 при атмосферном давлении с выдержкой в течении 1 часа.

Затем цеолитный материал подвергали обработке 0.1 М раствором NaNO3 в течении 1,5 часов при температуре 50°С, а затем сушили при температуре 50°С в течение 2 ч, промывали дистиллированной водой и сушили при температуре 110°С, а затем прокаливали 3 часа в муфеле при температуре 550°С.

Полученный цеолитный катализатор испытывали в реакции алкилирования. Процесс алкилированния изобутана олефинами С4 в общем виде осуществляли следующим образом. Предварительную подготовку катализатора производили путем его нагревания в токе инертного газа до 350°С и выдержки при этой температуре в течение 60 мин. Сырье содержало 5% изобутилена и 95% изобутана. Процесс проводили при температуре 80°С, давлении 1,7 МПа, объемной скорости подачи жидкого сырья 4 ч-1 на стационарном слое твердых частиц катализатора.

Пример 2. (сравнительный). В качестве катализатора алкилирования использовали Н-форму цеолита Yc модулем (SiO2/Al2O5=5) и остаточным содержанием Na2O 0,08% без дополнительных обработок. Образец испытывали в ре-акции алкилирования, как в примере 1.

Сравнение данных примеров 1 и 2 показывает преимущества заявляемого способа в отношении увеличения селективности и стабильности катализатора.

Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
26.08.2017
№217.015.d479

Устройство для алкилирования изобутана олефинами на твердом катализаторе

Изобретение относится к устройству для алкилирования изобутана олефинами на твердом катализаторе в виде ректификационной колонны, содержащему ректификационные секции и реакционные секции с твердым катализатором, которые имеют питающий канал и переливной карман, связанные с ректификационными...
Тип: Изобретение
Номер охранного документа: 0002622294
Дата охранного документа: 14.06.2017
Showing 1-6 of 6 items.
10.04.2016
№216.015.2c3c

Способ приготовления катализатора и катализатор алкилирования изобутана изобутеном

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ приготовления катализатора на основе цеолита типа NaNHY с остаточным содержанием оксида натрия не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита с водным...
Тип: Изобретение
Номер охранного документа: 0002579512
Дата охранного документа: 10.04.2016
25.08.2017
№217.015.ae9f

Способ получения катализатора и катализатор алкилирования изобутана изобутеном

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ получения катализатора на основе цеолита типа NaNHY с остаточным содержанием NaO не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита водным раствором нитрата...
Тип: Изобретение
Номер охранного документа: 0002612965
Дата охранного документа: 14.03.2017
26.08.2017
№217.015.d479

Устройство для алкилирования изобутана олефинами на твердом катализаторе

Изобретение относится к устройству для алкилирования изобутана олефинами на твердом катализаторе в виде ректификационной колонны, содержащему ректификационные секции и реакционные секции с твердым катализатором, которые имеют питающий канал и переливной карман, связанные с ректификационными...
Тип: Изобретение
Номер охранного документа: 0002622294
Дата охранного документа: 14.06.2017
10.05.2018
№218.016.3ce3

Катализатор для окислительной конденсации метана и способ его получения

Изобретение относится к технологии переработки метансодержащих газов, например природного газа, шахтного метана и т.п. для получения С углеводородов путем окислительной конденсации метана (ОКМ) при атмосферном давлении и повышенной температуре в присутствии катализатора. Заявляется катализатор...
Тип: Изобретение
Номер охранного документа: 0002647844
Дата охранного документа: 21.03.2018
01.11.2018
№218.016.992c

Способ получения сферического катализатора и катализатор алкилирования изобутана изобутеном

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном и может быть использовано в технологии производства катализаторов алкилирования изоалканов алкенами, а также технологии производства катализаторов изомеризации. Описывается способ приготовления...
Тип: Изобретение
Номер охранного документа: 0002671413
Дата охранного документа: 31.10.2018
02.03.2020
№220.018.0818

Способ получения алкилбензинов в каталитическом реакторе с внутренним осевым распределением алкилирующего агента

Изобретение относится к области химической технологии нефтеперерабатывающей промышленности, а именно к способам получения высокооктановых компонентов бензина из сжиженных углеводородных газов. Способ алкилирования изоалканов С-С олефинами С-С в реакторе с неподвижным слоем твердого катализатора...
Тип: Изобретение
Номер охранного документа: 0002715540
Дата охранного документа: 28.02.2020
+ добавить свой РИД