×
02.10.2019
219.017.cdf2

Результат интеллектуальной деятельности: Устройство для пневматического транспортирования сыпучего материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство для пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим приспособлением, сообщенный с транспортным трубопроводом, газоподводящую магистраль с газопроводами аэрирующего приспособления и транспортного трубопровода, а также вихревую трубу, сообщенную своим входным каналом с газоподводящей магистралью. Выходным каналом горячего потока вихревая труба сообщена с газопроводом аэрирующего приспособления, а выходным каналом холодного воздуха – с газопроводом транспортного трубопровода. На наружной поверхности вихревой трубы выполнено покрытие тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от выходного канала горячего потока до выходного канала холодного потока. Изобретение обеспечивает подачу сыпучего материала с заданным качеством по концентрации объемных частиц в транспортный трубопровод, путем устранения образования комков под воздействием концентрирующейся парообразной влаги в горячем потоке, за счет поддержания нормированного температурного режима термодинамического расслоения в вихревой трубе. 4 ил.

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности.

Известно устройство для пневматического транспортирования сыпучего материала (см., патент РФ №2534852 МПК 12 В 65 G 53/16, В 65 G 53/40. Опубл. 10.12.2014), содержащее устройство для пневматического транспортирования сыпучего материала, содержащее расходный бункер с аэрирующим приспособлением, сообщенный своим разгрузочным отверстием посредством затвора с транспортным трубопроводом, газоподводящую магистраль с газопроводами аэрирующего приспособления и транспортного трубопровода, вихревую трубу, сообщенную своим входным каналом с газоподводящей магистралью, выходным каналом горячего потока с газопроводом аэрирующего приспособления и выходным каналом холодного потока с газопроводом транспортного трубопровода, установленные на газопроводе аэрирующего приспособления фильтр и эжектор с клапаном, сообщенный посредством последнего с атмосферой, и масловлагоотделитель, установленный на газопроводе транспортного трубопровода, причем в расширяющейся части эжектора установлен завихритель, выполненный из четырех пластин, соединенных одной осью, входные и выходные участки которых расположены один относительно другого под прямым углом, а у выходного отверстия расширяющейся части эжектора выполнена круговая канавка, которая соединена с грязесборником.

Недостатком является энергоемкость пневматического транспортирования, обусловленная интенсивным разрушениям под воздействием коррозии наружной поверхности завихрителя при воздействии на нее мелкодисперсной влаги атмосферного воздуха, поступающей в эжектор, соответственно, наличием внеплановых ремонтов по замене завихрителя.

Известно устройство для пневматического транспортирования сыпучего материала (см. патент РФ на полезную модель №154411 МПК В 65 G 53/16 Опубл. 20.08.2015. Бюл. №23), содержащее расходный бункер с аэрирующим приспособлением, сообщенный своим разгрузочным отверстием посредством затвора с транспортным трубопроводом, газоподводящую магистраль с газопроводами аэрирующего приспособления и транспортного трубопровода, вихревую трубу, сообщенную своим входным каналом с газоподводящей магистралью, выходным каналом горячего потока с газопроводом аэрирующего приспособления и выходным каналом холодного потока с газопроводом транспортного трубопровода, установленные на газопроводе аэрирующего приспособления фильтр и эжектор с клапаном, сообщенный посредством последнего с атмосферой, и масловлагоотделитель, установленный на газопроводе транспортного трубопровода, причем в расширяющейся части эжектора установлен завихритель, выполненный из четырех пластин, соединенных одной осью, входные и выходные участки которых расположены один относительно другого под прямым углом, а у выходного отверстия расширяющейся части эжектора выполнена круговая канавка, которая соединена с грязесборником, при этом каждая из четырех пластин завихрителя покрыта с наружной стороны наноматериалом в виде стеклоподобной пленки.

Недостатком является снижение качества классификации при длительной эксплуатации сыпучего материала из-за образования комков на выходе из расходного бункера в транспортный трубопровод, вследствие снижения температуры горячего потока, поступающего после аэрирующего приспособления во внутренний объем расходного бункера из-за потерь теплоты через наружную поверхность вихревой трубы в окружающую среду.

Технической задачей предлагаемого изобретения является обеспечение подачи сыпучего материала с заданным качеством по концентрации объемных частиц в транспортный трубопровод, путем устранения образования комков под воздействием концентрирующейся парообразной влаги в горячем потоке, за счет поддержания нормированного температурного режима термодинамического расслоения в вихревой трубе, вследствие покрытия ее наружной поверхности тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от входного канала горячего потока до выходного канала холодного потока.

Технический результат по обеспечению нормированного качества классификации при изменяющихся объемных частицах классифицируемого вещества, достигается тем, что устройство для пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим приспособлением, сообщенный своим разгрузочным отверстием посредством затвора с транспортным трубопроводом, газоподводящую магистраль с газопроводами аэрирующего приспособления и транспортного трубопровода, вихревую трубу, сообщенную своим входным каналом с газоподводящей магистралью, выходным каналом горячего потока с газопроводом аэрирующего приспособления и выходным каналом холодного потока с газопроводом транспортного трубопровода, установленные на газопроводе аэрирующего приспособления фильтр и эжектор с клапаном, сообщенный посредством последнего с атмосферой, и масловлагоотделитель, установленный на газопроводе транспортного трубопровода, причем в расширяющейся части эжектора установлен завихритель, выполненный из четырех пластин, соединенных одной осью, входные и выходные участки которых расположены один относительно другого под прямым углом, а у выходного отверстия расширяющейся части эжектора выполнена круговая канавка, которая соединена с грязесборником, кроме того, каждая из четырех пластин завихрителя покрыта с наружной стороны наноматериалом в виде стеклоподобной пленки, при этом выполнено покрытие наружной поверхности вихревой трубы тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от выходного канала горячего потока до выходного канала холодного потока.

На фиг. 1 схематично изображено устройство для пневматического транспортирования сыпучего материала, на фиг.2 – аксонометрия завихрителя, на фиг.3 – одна из пластин завихрителя с входными участками, расположенными один относительно другого под углом 90° и покрыта с наружной стороны наноматериалом в виде стеклоподобной пленки, на фиг. 4 – выполнение покрытия наружной поверхности вихревой трубы тонковолокнистым базальтовым материалом.

Устройство содержит расходный бункер 1 с аэрирующим приспособлением, поочередно подключаемыми аэрационными соплами 2, транспортный трубопровод 3 с затвором 4, эжектор 5, газоподводящую магистраль 6 сжатого воздуха, вихревую трубу 7 с каналами горячего 8 и холодного 9 потоков, газопровод 10 аэрирующего приспособления, последовательно соединенные фильтр 11, коммутационную 12 установку, краны 13, 14, через которые осуществляется подача сжатого и атмосферного (АТ) воздуха, масловлагоотделитель 15, установленный на газопроводе 16 транспортного трубопровода 3 между вихревой трубой 7 и бункером 1. В расширяющейся части 17 эжектора 5 установлен завихритель 18, выполненный из четырех 19, 20, 21 и 22 пластин, входные 23, 25, 27, 29 и выходные 24, 26, 28, 30 участки которых расположены один относительно другого под прямым углом, а у выходного отверстия 31 расширяющейся части 17 эжектора 5 выполнена круговая канавка 32, которая соединена с грязесборником 33. При этом каждая из четырех 19, 20, 21 и 22 пластин с наружной поверхности 34 (35,36,37) покрыта наноматериалом 38 (39,40,41) в виде стеклоподобной пленки.

Наружная поверхность 42 выполнена с покрытием тонковолокнистым базальтовым материалом 43 в виде витых пучков 44, продольно вытянутых от выходного канала горячего 8 потока до выходного канала холодного 9 потока.

Устройство работает следующим образом.

В процессе термодинамического расслоения газа в вихревой трубе 7 горячий поток, контактирует с ее внутренней поверхностью и теплопроводностью через толщину конструкции передает теплоту наружной поверхности (42) и далее конвекцией окружающей среде (см., например, стр. 183. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат. 1981 г. – 417 с., ил.). Следовательно, осуществляются тепловые потери вихревой трубой 7, в связи с этим изменяется температурный режим горячего потока по сравнению с нормированным при поступлении в аэрирующее приспособление через аэрирующие сопла 2 во внутренний объем расходного бункера 1.

В горячем потоке газа всегда находится парообразная влага (см., например, Кэйс В.М. Конвективный тепло- и массообмены. М.: Энергия, 1992 – 440 с., ил.) и по мере охлаждения осуществляется ее конденсация, что способствует увеличению твердых классифицируемых частиц во внутреннем объеме расходного бункера 1. В результате слипания наблюдается укрупнение твердых классифицируемых частиц с последующим образованием комков в сыпучем материале при поступлении в транспортный трубопровод 10. Следовательно, снижается качество готового продукта при работе с широким изменением объемных твердых частиц классифицируемого сыпучего материала.

При выполнении покрытия наружной поверхности 42 вихревой трубы 7 тонковолокнистым базальтовым материалом 43 в виде витых пучков 44, продольно вытянутых от выходного канала горячего 8 потока к выходному каналу холодного 9 потока, наблюдается не только устранение потерь теплоты в окружающую среду (см., например, Волокнистые материалы из базальтов Украины. Сборник статей. Киев Техника, 1971 – 172 с., ил.), но и аккумулирование тепловой энергии, передаваемой от внутренней поверхности к наружной поверхности 42 конструкции вихревой трубы 7. В результате, поддерживается нормированный температурный режим термодинамического расслоения газа в вихревой трубе 7 при длительной эксплуатации вне зависимости от температуры наружного воздуха окружающей среды. Следовательно, горячий поток газа с температурой, превыщающей точку «росы» (см., например, стр. 215 Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа, М.: 1980 – 469 с., ил.) поступает в аэрирующее приспособление через аэрационные сопла 2 во внутренний объем расходного бункера 1, где не осуществляется процесс конденсации парообразной влаги и сыпучий материал заданного качества поступает в транспортный трубопровод 10.

Известно, что производство сжатого воздуха является энергоемким процессом (см., например, Мезенцев В.П. «Экономия тепловой и электрической энергии», М., 1989 – 130 с.), поэтому постоянное смешивание сжатого воздуха с атмосферным вне зависимости от погодно-климатического загрязнения его каплеобразной влагой снижает энергозатраты при эксплуатации устройства для пневматического транспортирования сыпучего материала. При открытом положении крана 14 атмосферный воздух, загрязненный мелкодисперсными каплеобразными частицами, под действием процесса эжекции поступает в расширяющуюся часть 17 эжектора 5, где смешивается со сжатым воздухом из сети, перемещаясь от входных участков 23, 25, 27 и 29 пластин 19, 20, 21 и 22 разделяясь на четыре потока, каждый из которых поворачивается на 90° перед выходными участками 24, 26, 28 и 30, образуя тем самым завихренную вращающуюся массу. При перемещении мелкодисперсной влаги атмосферного воздуха по наружным поверхностям 34(35,36,37) каждой их четырех 19, 20, 21 и 22 пластин осуществляется коррозийное воздействие с последующим разрушением завихрителя 18. А это приводит к внеплановым демонтажным работам с необоснованными энергозатратами на процесс пневматического транспортирования сыпучего материала, и как следствие увеличивает энергоемкость эксплуатации устройства в целом. Для устранения коррозийного воздействия на завихритель 18 наружная поверхность 34(35,36,37) каждой из четырех 19, 20, 21 и 22 пластин покрывается наноматериалом 38(39,40,41) в виде стеклоподобной пленки. Тогда мелкодисперсная и конденсирующаяся влага, поступающая с атмосферным воздухом через кран 14 в эжектор 5 перемещается по наноматериалу 38(39,40,41) в виде стеклоподобной пленки, что не приводит к образованию налипающихся мелкодисперсных частиц влаги. То есть отсутствует сцепление капельной влаги со стеклоподобной пленкой (см., например, Киш Л. Кинетика электрохимического растворения металлов, М.: Мир, 1990 – 272 с., ил.) и, как следствие, устраняется коррозийное воздействие на наружные поверхности 34(35,36,37) всех четырех 19, 20, 21 и 22 пластин завихрителя 18. В результате вихреобразного движения смеси сжатого и атмосферного воздуха происходит термодинамическое расслоение на периферийный или насыщенный мелкодисперсной влагой и осевой очищенный потоки (см., например, Меркулов В.П. Вихревой эффект и его применение в технике. Самара, 1998 г., 369 с., ил.). Мелкодисперсные каплеобразующие частицы под действием центробежных сил перемещаются к выходному отверстию 31 и поступают в кольцевую канавку 32, откуда в грязесборник 33. Очищенная от влагообразных загрязнений после эжектора 5, смесь сжатого и атмосферного воздуха поступает в фильтр 11, где и обрабатывается до нормированных по влажности параметров. В результате расслоения и завихрения в расширяющейся части эжектора, без дополнительных энергозатрат (используется энергия сжатого воздуха) осуществляется постоянная подача атмосферного воздуха для смешивания со сжатым воздухом и соответственно достигается уменьшение энергозатрат на его производство, при обеспечении эффективной работы устройства для пневматического транспортирования сыпучего материала.

В исходном положении сыпучий материал засыпается в расходный бункер 1, затвор 4 закрыт и препятствует проникновению сыпучего материала в транспортный трубопровод 3 через разгрузочное отверстие бункера. Закрыты также краны 13 и 14, и коммутационная установка 12 не пропускает воздух к аэрационным соплам 2 аэрирующего приспособления.

При необходимости обеспечить выдачу и транспортирование сыпучего материала открывается затвор 4 и кран 13. Сжатый воздух из магистрали 6 поступает в вихревую трубу 7, где термодинамически расслаивается на горячий и холодный потоки. Часть сжатого воздуха в виде холодного потока с сконденсировавшейся влагой из канала 9 вихревой трубы 7 по газопроводу 16 поступает в масловлагоотделитель 15 для отделения конденсата и далее в качестве осушенного и охлажденного транспортного агента направляется в трубопровод 3. Одновременно другая часть сжатого воздуха из канала горячего потока 8 вихревой трубы 7, насыщенная загрязнениями в виде твердых частиц (пыли, ржавчины и т.д.) и капельной влаги, поступает по газопроводу 10 через эжектор 5 в фильтр 11, где очищается, и далее через коммутационную установку 12 к аэрационным соплам 2.

В качестве вихревой трубы может быть использована любая из известных конструкций, обеспечивающая необходимый расход как транспортирующего агента, так и воздуха, поступающего к аэрирующему приспособлению. Соотношение количества холодного и горячего потоков определяется как степень сырости транспортируемого сыпучего материала, т.е. необходимостью его осушки и ликвидации возможности в этом случае процесса залипания в транспортном трубопроводе, так и влажностью сжатого воздуха, транспортирующего данный материал.

Следовательно, покрытие наружных поверхностей каждой из четырех пластин наноматериалом в виде стеклоподобной пленки предотвращает налипание конденсируемой влаги и последующее коррозийное разрушение завихрителя и, как следствие аварийную остановку при эксплуатации устройства для пневматического транспортирования сыпучего материала.

Оригинальность предлагаемого технического решения заключается в том, что поддержание заданного качества готового продукта в изменяющихся условиях классификации материала по различным объемным составляющим от мелкодисперсного порошка до гранул или таблеток в устройстве для пневматического транспортирования сыпучих материалов достигается тем, что обеспечивается поддержание температурного режима термодинамического расслоения газа в вихревой трубе путем устранения тепловых потерь, т.е. рассеивания тепловой энергии в окружающую среду, за счет выполнения покрытия ее наружной поверхности тонковолокнистым базальтовым материалом в виде витых пучков продольно вытянутых от выходного канала горячего потока до выходного канала холодного потока.

Устройство для пневматического транспортирования сыпучего материала, содержащее расходный бункер с аэрирующим приспособлением, сообщенный своим разгрузочным отверстием посредством затвора с транспортным трубопроводом, газоподводящую магистраль с газопроводами аэрирующего приспособления и транспортного трубопровода, вихревую трубу, сообщенную своим входным каналом с газоподводящей магистралью, выходным каналом горячего потока с газопроводом аэрирующего приспособления и выходным каналом холодного потока с газопроводом транспортного трубопровода, установленные на газопроводе аэрирующего приспособления фильтр и эжектор с клапаном, сообщенный посредством последнего с атмосферой, и масловлагоотделитель, установленный на газопроводе транспортного трубопровода, причем в расширяющейся части эжектора установлен завихритель, выполненный из четырех пластин, соединенных одной осью, входные и выходные участки которых расположены один относительно другого под прямым углом, а у выходного отверстия расширяющейся части эжектора выполнена круговая канавка, которая соединена с грязесборником, кроме того, каждая из четырех пластин завихрителя покрыта с наружной стороны наноматериалом в виде стеклоподобной пленки, отличающееся тем, что выполнено покрытие наружной поверхности вихревой трубы тонковолокнистым базальтовым материалом в виде витых пучков, продольно вытянутых от выходного канала горячего потока до выходного канала холодного потока.
Источник поступления информации: Роспатент

Showing 141-150 of 320 items.
07.09.2018
№218.016.83ed

Быстродействующее устройство формирования уникальной последовательности, используемой при обезличивании персональных данных

Изобретение относится к области вычислительной техники. Техническим результатом является повышение уровня безопасности информационной системы персональных данных. Раскрыто быстродействующее устройство формирования уникальной последовательности для каждого субъекта информационной системы...
Тип: Изобретение
Номер охранного документа: 0002665899
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.847b

Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги

Изобретение относится к технике управления дорожными транспортными средствами и касается обеспечения безопасности движения транспортных средств. Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги в том, что по краям дороги перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002666103
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84de

Способ автоматизированного определения и контроля местоположения транспортного средства на дорожном полотне с двусторонним однополосным движением

Изобретение относится к технике управления дорожно-транспортным движением и касается определения местоположения транспортных средств на дорожном полотне с двусторонним однополосным движением. Для определения местоположения всех транспортных средств, въезжающих в зону контролируемого участка...
Тип: Изобретение
Номер охранного документа: 0002666087
Дата охранного документа: 05.09.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.949c

Способ получения карбоксилатов олова (ii)

Изобретение относится к простому способу получения карбоксилатов олова (II) путем взаимодействия металла с окислителем в присутствии стимулирующей добавки йода в бисерной мельнице вертикального типа в уайт-спирите со стеклянным бисером в качестве перетирающего агента в массовом соотношении с...
Тип: Изобретение
Номер охранного документа: 0002670199
Дата охранного документа: 19.10.2018
01.11.2018
№218.016.98dc

Способ получения карбоксилатов олова (ii)

Изобретение относится к способу получения карбоксилатов олова (II) путем взаимодействия металла, его диоксида и карбоновой кислоты в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента,...
Тип: Изобретение
Номер охранного документа: 0002671197
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
21.11.2018
№218.016.9ebe

Способ определения параметров динамического догружения в растянутых железобетонных элементах конструктивных систем

Предлагаемое изобретение относится к области строительства, в частности к испытаниям растянутых элементов конструкций железобетонных стержневых систем. Способ предусматривает устройство в среднем поперечном сечении испытываемого элемента пазов глубиной и шириной до 0,1 h высоты сечения. В зоне...
Тип: Изобретение
Номер охранного документа: 0002672771
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9ec8

Звукоизолирующее окно

Изобретение относится к строительству, а именно к конструкции звукоизолирующего окна, используемого в различных зданиях и сооружениях. Технический результат по обеспечению комфортных условий внутри здания или сооружения с сохранением звукоизолирующих параметров окна достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002672735
Дата охранного документа: 19.11.2018
Showing 121-122 of 122 items.
24.06.2020
№220.018.29b6

Система лучистого отопления здания

Система лучистого отопления здания относится к строительству, в частности к отопительным системам здания. Технический результат по поддержанию экологически безопасной длительной эксплуатации системы лучистого отопления здания, особенно с высокой насыщенностью внутреннего воздуха твердыми...
Тип: Изобретение
Номер охранного документа: 0002724144
Дата охранного документа: 22.06.2020
27.06.2020
№220.018.2be7

Система гелиотеплохладоснабжения

Технической задачей предлагаемого изобретения является энергосберегающее обеспечение комфортных параметров воздуха в малоэтажных зданиях при длительной эксплуатации в изменяющихся погодно-климатических, в том числе и суточных, воздействиях окружающей среды, путем снижения тепловых потерь...
Тип: Изобретение
Номер охранного документа: 0002724642
Дата охранного документа: 25.06.2020
+ добавить свой РИД