×
02.10.2019
219.017.cd9d

Результат интеллектуальной деятельности: Способ синтеза слоистых гидроксинитратов гадолиния

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs). Способ получения ориентированных кристаллов слоистого гидроксинитрата гадолиния включает в себя следующие стадии: получение раствора нитрата гадолиния; приведение в контакт указанного выше раствора нитрата гадолиния и раствора аммиака таким образом, что в процессе осаждения значение рН реакционной смеси остается постоянным и его значение находится в интервале 7-9 единиц рН при концентрации гадолиния в растворе нитрата в диапазоне от 0,05 до 1 моль/л; отделение сформировавшейся твердой фазы от маточного раствора; сушку осадка. Изобретение позволяет получать ориентированные кристаллы слоистого гидроксинитрата гадолиния, обладающие повышенной однородностью, при снижении энергоемкости и количества стадий процесса синтеза. 5 з.п. ф-лы, 9 ил., 5 пр.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ Изобретение относится к способам получения ориентированных кристаллов слоистых гидроксисолей редкоземельных элементов, более конкретно, к способам получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ

Соединения гадолиния характеризуются высокой химической стабильностью и возможностью введения ионов редкоземельных элементов в широком диапазоне концентраций. Создание донорно-акцепторных ионных пар (Ег-Yb, Тm-Yb, Но-Тb) обеспечивает преобразование электромагнитного излучения УФ и ИК диапазонов в видимую область по механизмам «down-conversion» и «up-conversion». Наличие неспаренных электронов на 4г*-оболочке гадолиния обеспечивает парамагнетизм его соединений и широкие возможности их применения в биологии, медицине, атомной и альтернативной энергетике (МРТ, биоимиджинг, защита от тепловых нейтронов, солнечные батареи и др.).

Слоистые гидроксисоли гадолиния, в том числе гидроксинитрат гадолиния, являются прекурсорами для создания устойчивых коллоидных растворов, из которых возможно формирование тонкослойных покрытий. Известно, что свойства конечного покрытия напрямую зависят от размера, формы и ориентации кристаллов слоистого гидроксинитрата гадолиния.

В современной практике существуют способы получения ориентированных кристаллов слоистого гидроксинитрата гадолиния, включающие в себя стадии формирования разупорядоченных структур слоистых гидроксинитратов гадолиния и их дальнейшую кристаллизацию при повышенных температурах.

Так известен способ синтеза ориентированных кристаллов слоистых гидроксисолей редкоземельных элементов [Патент CN101812295, приор, от 09.02.2010, опубл. 25.08.2010, МПК C09K 11/78]. Способ включает себя следующие стадии: приготовление раствора, содержащего ионы трехвалентного иттрия и ионы других редкоземельных элементов (РЗЭ), выбранных из Eu3+, Gd3+, Tb3+, Dy3+, Но3+, Er3+, Tm3+, Yb3+ или Lu3+, причем мольное соотношение ионов Y3+ к ионами других РЗЭ находится в диапазоне от 1/9 до 9/1, а молярная концентрация ионов иттрия находится в диапазоне от 0,005 до 0,2 моль/л; приготовление общего раствора гидроксида натрия и нитрата натрия, в котором концентрации гидроксида натрия и нитрата натрия находятся в интервалах 0,1-0,5 моль/л и 0,05-0,25 моль/л соответственно; приведение в контакт растворов, полученных на первой и второй стадии путем медленного вливания общего раствора гидроксида натрия и нитрата натрия в раствор содержащего ионы трехвалентного иттрия и ионы других редкоземельных элементов до достижения значения рН реакционной смеси от 6 до 7 единиц; выдержка полученной смеси в течении 10-50 минут при постоянном перемешивании, обработка смеси при повышенной температуре в диапазоне от 70 до 150°С в течении 6-48 часов; фильтрация полученного осадка, его промывка и сушка. Недостатками предложенного способа являются многостадийность процесса, необходимость использования стадии выдержки осадка при повышенной температуре, что существенно повышает энергоемкость предложенного способа и затрудняет его промышленное использование.

Наиболее близким к заявляемому решению является подход к синтезу ориентированных кристаллов гидроксинитрата гадолиния [One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3⋅nH2O) nanosheets for a wide spectrum of Ln (Ln=Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence", Journal of Materials Chemistry C", 2015, Vol. 3, No.14, pp. 3428-3437], где предусмотрено введение аммиака в исходный раствор нитратов РЗЭ, который предварительно был охлажден до температуры 4°С. В процессе образования осадка указанное значение температуры также поддерживалось постоянным. рН в процессе незначительно возрастает до значения 7,91 за счет практически полного поглощения вводимых ОН- -ионов при образовании осадка. Процесс останавливают при резком подъеме рН до значения 8,4, что означает завершение поглощения ОН- -ионов из-за отсутствия необходимого количества катионов металлов в растворе для формирования твердой фазы. Далее осадок фильтровали, последовательно промывали дистиллированной водой и этанолом, подвергали термообработке. Недостатком указанного способа могут быть названы малый размер сформированных ориентированных кристаллов и их неоднородность, а также энергоемкость стадии охлаждения.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение направлено на преодоление описанных выше недостатков: снижение количества стадий процесса получения ориентированных кристаллов слоистого гидроксинитрата гадолиния, снижение энергоемкости процесса синтеза, а также повышение однородности получаемых ориентированных кристаллов слоистого гидроксинитрата гадолиния.

Технический результат достигается последовательностью следующих технологических операций:

- получения раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов (La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y); при формировании общего раствора в исходный раствор нитрата гадолиния вводят добавку раствора нитрата металла группы лантаноидов, или нитрата иттрия, или их смеси в мольном отношении Me/Gd=0,005-0,2, где Me соответствует La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y.

- приведения в контакт указанного выше раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов и раствора аммиака таким образом, что в процессе осаждения значение рН реакционной смеси поддерживают постоянным в интервале 7-9 единиц рН, более предпочтительно 7,5-8,5 единиц рН при суммарной концентрации ионов гадолиния и ионов металлов в растворе нитратов в диапазоне от 0,05 до 1 моль/л.

- отделения сформировавшейся твердой фазы от маточного раствора любым известным методом;

- сушки указанного выше осадка в атмосфере воздуха до получения заявленного соединения.

Более того возможно проведение стадии промывки осадка после стадии его отделения от маточного раствора. В качестве промывной жидкости может быть использована вода или спирт (этиловый спирт, изопропиловый спирт или бутиловый спирт), или обе жидкости, где предпочтительной последовательностью является промывка сначала водой, а затем спиртом.

За счет организации процесса осаждения при постоянном значении рН реакционной среды в указанном диапазоне обеспечивается ориентированный рост кристаллов непосредственно при осаждении слоистых гидроксинитратов гадолиния, что делает возможным исключение стадии гидротермального синтеза.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Сущность изобретения поясняется фигурами, где изображено:

- на фиг. 1 - таблица параметров образцов слоистых гидроксинитратов гадолиния, синтезированных в Примерах 1-5;

- на фиг. 2 - гранулометрическое распределение частиц по размеру слоистого гидроксинитрата гадолиния, синтезированного в Примере 1;

- на фиг. 3 - рентгенограмма слоистого гидроксинитрата гадолиния, синтезированного в Примере 1;

- на фиг. 4 - СЭМ-изображение частиц образца, синтезированного по примеру 1;

- на фиг. 5 - распределение частиц по размеру слоистого гидроксинитрата гадолиния, синтезированного в Примере 5;

- на фиг. 6 - рентгенограмма слоистого гидроксинитрата гадолиния, синтезированного в Примере 5.

- на фиг. 7 - СЭМ-изображение частиц образца, синтезированного по примеру 5.

- на фиг. 8 - спектры поглощения в области длин волн 200-300 нм с пиком возбуждения при длины волны, равной 217 нм, и люминесценций образца в области длин волн 500-700 нм образца, синтезированного по Примеру 2 после сушки, где 1 - пик, соответствующий переходу Er3+:4S3/24I15/2 при длине волны, равной 540 нм.

- на фиг. 9 - спектры поглощения в области длин волн 200-300 нм и люминесценций образца в области длин волн 500-700 нм образца, синтезированного по Примеру 2 после обжига при 600°С, где 1 - соответствует переходу Gd3+:8S1/26DJ при длины волны, равной 230 нм, 2 - пик, соответствующий переходу Er34+:2Н11/24I15/2, 3 - максимуму интенсивности при переходе Er34+: 4S3/24I15/2 при длине волны 554 нм, 4 - переходу Er3+:4FJ4I15/2.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На первой стадии готовят раствор нитрата гадолиния. Для приготовления раствора нитрата гадолиния обычно используют воду, деионизированная вода является особенно предпочтительной. Прекурсорами для приготовления раствора нитрата гадолиния могут быть как соли нитрата гадолиния, так и любые соединения гадолиния, которые при контакте с любым соединением - донором NO3--группы - дают нитрат гадолиния в качестве продукта реакции. Значение концентрации раствора нитрата гадолиния может находится в интервале 0,05-1 моль/л, предпочтительно 0,4-0,9 моль/л. Слишком высокая концентрация раствора нитрата гадолиния приводит к снижению однородности получаемых ориентированных кристаллов слоистого гидроксинитрата гадолиния, слишком низкая концентрация раствора нитрата гадолиния снижает производительность процесса и не является целесообразной для промышленного применения.

В раствор нитрата гадолиния может быть введена добавка раствора нитрата металла группы лантаноидов или иттрия, или их смеси в мольном отношении Me/Gd=0,005-0,2 (Me соответствует La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y).

На второй стадии осуществляют процесс осаждения путем приведения в контакт указанного выше раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов и осадителя таким образом, что в процессе осаждения значение рН реакционной смеси остается постоянным и его значение находится в интервале 7-9 единиц рН, более предпочтительно 7,5-8,5 единиц рН. В качестве осадителя используют водный раствора аммиака в том объеме, который необходим для поддержания значения рН в указанном интервале. Значение концентрации водного раствора аммиака может находится в интервале от 1 до 10 моль/л, предпочтительнее от 4 до 6 моль/л.

Приведение в контакт раствора нитрата гадолиния и раствора осадителя может быть выполнено в полунепрерывном или непрерывном режимах, при этом раствор нитрата гадолиния и раствор осадителя дозируют в общий реакционный объем в котором поддерживают выбранное значение рН за счет регулирования скорости дозирования растворов. Дозирование растворов может быть выполнено при использовании перистальтических насосов, мембранных насосов, насосов прямого дозирования, центробежных насосов с регулируемой скоростью вращения, а также другими способами. Контроль рН реакционного объема ведут в течение всего процесса осаждения при помощи рН-метров с ион-селективными электродами или при помощи иных систем детектирования концентрации Н+ ионов в растворе. Для поддержания значения рН в реакционном объеме на заданном уровне возможно использование систем скоростей дозирования раствора нитрата гадолиния и раствора осадителя.

На третьей стадии происходит отделение сформировавшейся на предыдущей стадии твердой фазы от маточного раствора любым известным методом (фильтрованием, выпариванием, центрифугированием и т.д.). Предпочтительнее проводить вакуумную фильтрацию, так как этот метод является наиболее удобным в промышленных масштабах, и более того, этот метод наиболее удобен при осуществлении последующей стадии промывки осадка.

Дополнительной стадией может являться промывка осадка от адсорбированных ионов маточного раствора и молекул воды. Для удаления ионов маточного раствора в качестве промывной жидкости можно использовать воду, причем деионизированная вода является предпочтительной. Предпочтительным также является соотношение твердого к жидкому, находящееся в интервале от 1/10 до 1/20. Больший объем промывных вод является нецелесообразным для промышленного применения. Для удаления адсорбированных молекул воды в качестве промывной жидкости может быть использован любой спирт. В качестве примеров могут быть названы этиловый спирт, изопропиловый спирт или бутиловый спирт. Более того, для промывки может быть использована как одна промывная жидкость, так и несколько промывных жидкостей, причем последовательная промывка сначала водой, а потом спиртом является предпочтительной.

На последней стадии проводят сушку осадка в атмосфере воздуха до постоянной массы и получения заявленного соединения. Температура сушки может находиться в диапазоне 20-120°С, наиболее предпочтительным является диапазон 50-80°С.

Сущность и преимущества изобретения могут быть пояснены следующими примерами. На фиг. 1 изображена таблица параметров образцов слоистых гидроксинитратов гадолиния, синтезированных в Примерах 1-5.

Пример 1.

Пример относится к осаждению гидроксинитрата гадолиния при значении рН=7 и с концентрацией раствора нитрата гадолиния 0,5 моль/л.

В химический стакан вводят 281 мл раствора нитрата гадолиния с концентрацией 322 г/л в пересчете на оксид гадолиния, доводят деионизованной водой до 1 литра. В другой химический стакан вводят 87 мл раствора аммиака с концентрацией 14,4 моль/л, доводят деионизованной водой до 250 мл, таким образом получают раствор аммиака с концентрацией 5,0 моль/л.

В химический стакан, снабженный верхнеприводной мешалкой и датчиком рН вводят 250 мл деионизованной воды. Далее в стакан при перемешивании при помощи перистальтических насосов дозируют раствор нитрата гадолиния со скоростью 5 мл/мин и водный раствор аммиака со скоростью 1,5 мл/мин, причем значение рН в стакане поддерживают в диапазоне от 6,8 до 7,2 ед. за счет периодического прерывания дозирования водного раствора аммиака.

Полученный осадок сушат на воздухе в течении 24 часов с последующей сушкой в сушильном шкафу при температуре 60°С в течении 24 часов.

Определение гранулометрического состава проводили с помощью метода лазерной дифракции при использовании прибора Analysette 22 NanoTec. На фиг. 2 приведено распределение частиц образца, полученного по примеру 1, по размеру. На фиг. 3 приведена рентгенограмма слоистого гидроксинитрата гадолиния, полученного по примеру 1. Морфологию частиц исследовали с помощью метода сканирующей электронной микроскопии, на фиг. 4 приведена фотография частиц образца, полученного по примеру 1, с увеличением в 2500 раз.

Пример 2.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 1 мол % при значении рН=7,5 и с концентрацией общего раствора нитратов гадолиния и эрбия 0,1 моль/л.

В этом случае поступают также, как в примере 1, но для осаждения гидроксинитрата гадолиния в химический стакан вводят 56 мл нитрата гадолиния с концентрацией 322 г/л в пересчете на оксид гадолиния и 6,1 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, доводят деионизованной водой до 1 литра. На протяжении всего осаждения значение рН в стакане поддерживают в диапазоне от 7,3 до 7,7 ед.

После осаждения суспензию фильтруют на нуч-фильтре. Осадок помещают в реактор с 250 мл абсолютного спирта и репульпируют с образованием водно-спиртовой суспензии в течении 30 минут. Далее водно-спиртовую суспензию фильтруют на вакуумном нуч-фильтре. Полученный осадок сушат на воздухе в течении 24 часов с последующей сушкой в сушильном шкафу при температуре 60°С в течении 24 часов. Люминесцентные свойства образца были исследованы после сушки при 60°С, а также после обжига при 600°С на спектрометре Lambda1000. Спектры возбуждения и люминесценций представлены на фигуре 8 и 9 соответственно.

Пример 3.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 20 мол. % при значении рН=7,5 и с концентрацией общего раствора нитратов гадолиния и эрбия 0,5 моль/л.

В этом случае поступают также, как в примере 1, однако для осаждения гидроксинитратов гадолиния и эрбия в химический стакан к нитрату гадолиния вводят 76 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, так же доводят деионизованной водой до 1 литра. Осаждения и все дальнейшие операции проводят также, как описано в примере 1.

Пример 4.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 5 мол.% и гидроксинитрата иттербия 15%мол. при значении рН=7 и с концентрацией общего раствора нитратов гадолиния, эрбия и иттербия 0,5 моль/л.

В этом случае поступают также, как в примере 1, но для осаждения гидроксинитратов в химический стакан к нитрату гадолиния вводят 19 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, а также вводят 36 мл раствора нитрата иттербия с концентрацией 298 г/л в пересчете на оксид иттербия, так же доводят деионизованной водой до 1 литра. Осаждения и все дальнейшие операции проводят также, как описано в примере 1.

Пример 5 (сравнительный).

Этот пример относится к осаждению гидроксинитрата гадолиния при значении рН=10 и с концентрацией раствора нитрата гадолиния 0,5 моль/л.

В этом случае поступают также, как в примере 1, но на протяжении всего осаждения поддерживают постоянное значение рН в диапазоне от 9,8 до 10,2 ед. Все последующие операции проводят также, как описано в примере 1.

На фиг. 5 приведено распределение частиц образца по размеру, полученного по примеру 5. На фиг. 6 приведена рентгенограмма слоистого гидроксинитрата гадолиния, полученного по примеру 1, на фиг. 7 приведена фотография частиц образца, полученного по примеру 1, с увеличением в 2500 раз.

Источник поступления информации: Роспатент

Showing 31-40 of 207 items.
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
Showing 31-40 of 45 items.
24.07.2020
№220.018.36b1

Способ определения усредненных значений метеорологических параметров в пограничном слое атмосферы

Изобретение относится к области метеорологии и может быть использовано для мониторинга метеорологической обстановки. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), движущийся под действием ветра и снабженный навигационными приборами....
Тип: Изобретение
Номер охранного документа: 0002727315
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.4295

Способ получения порошков гидратированного оксида циркония, обладающих высокой удельной поверхностью

Изобретение относится к неорганической химии и может быть использовано при изготовлении катализаторов. Сначала получают водный раствор соли циркония. Затем осаждают гидратированный оксид циркония путем дозирования в реакционный объём полученного раствора, в котором поддерживают постоянное...
Тип: Изобретение
Номер охранного документа: 0002765924
Дата охранного документа: 04.02.2022
12.04.2023
№223.018.443e

Способ получения радионуклидного генератора актиния-228

Изобретение относится к способу получения радионуклидного генератора актиния-228. В качестве сорбента актиния-228 используют твердый экстрагент, содержащий в качестве активного компонента моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, а в качестве элюента используют раствор...
Тип: Изобретение
Номер охранного документа: 0002736600
Дата охранного документа: 19.11.2020
12.04.2023
№223.018.4513

Установка для извлечения меди из кислых растворов

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов Установка для извлечения содержит ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через...
Тип: Изобретение
Номер охранного документа: 0002763907
Дата охранного документа: 11.01.2022
12.04.2023
№223.018.4533

Способ извлечения меди из кислых растворов

Изобретение относится к технической химии, а именно к способу извлечения меди из кислых оборотных травильных растворов, образующихся в производстве плоского проката. Извлечение меди из кислых растворов проводят сорбцией с образованием обезмеженного раствора и насыщенного сорбента. В качестве...
Тип: Изобретение
Номер охранного документа: 0002759979
Дата охранного документа: 19.11.2021
15.05.2023
№223.018.5b39

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.5b3a

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
16.05.2023
№223.018.6309

Способ определения дисперсного состава альфа-активных примесей при аварийном выбросе в атмосферу

Изобретение относится к области выявления радиационной обстановки. Технический результат заключается в повышении точности прогноза радиоактивного загрязнения местности в результате техногенной аварии. Вышеуказанный технический результат достигается за счет измерения дисперсного состава...
Тип: Изобретение
Номер охранного документа: 0002777752
Дата охранного документа: 09.08.2022
23.05.2023
№223.018.6e46

Способ переработки сбросного скандийсодержащего раствора уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает операцию экстракции скандия на твердом экстрагенте ТВЭКС, реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на...
Тип: Изобретение
Номер охранного документа: 0002795930
Дата охранного документа: 15.05.2023
23.05.2023
№223.018.6e62

Способ комплексной переработки сидеритовых руд

Изобретение относится к черной металлургии, а именно к переработке высокомагнезиальных сидеритовых руд. Способ включает дробление и грохочение исходной руды, магнетизирующий обжиг, сухую магнитную сепарацию, доизмельчение извлеченной магнитной фракции, выщелачивание из нее магния, выделение...
Тип: Изобретение
Номер охранного документа: 0002795929
Дата охранного документа: 15.05.2023
+ добавить свой РИД