×
12.09.2019
219.017.ca6f

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО И ДИНАМИЧЕСКОГО ТРЕНИЙ СЫПУЧИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для измерения статического (трения покоя) и динамического трений сыпучих материалов и может быть использовано в химической, горнорудной, фармацевтической, пищевой, металлургической и других отраслях промышленности. Устройство для определения статического и динамического трений сыпучих материалов, содержащее корпус в форме параллелепипеда и бункер подачи сыпучего материала, выполненные из прозрачного материала. Внутри корпуса параллельно передней стенке закреплена с возможностью съема внутренняя стенка, в основании корпуса выполнено отверстие прямоугольной формы под бункером для подачи сыпучих материалов, в которое установлены выдвижная панель с ручкой, крышка прямоугольной формы с отверстием прямоугольной формы, которое выполнено над бункером для подачи сыпучих материалов, который выполнен в форме трапеции и жестко закреплен к верхней части задней стенки корпуса, в нижней части бункера для подачи сыпучих материалов вмонтирована задвижка с ручкой, которая установлена в салазки, закрепленные в поддерживающие оси, внутри корпуса к задней стенке с одной стороны и внутренней стенке с другой стороны крепятся с возможностью снятия измерительные полки, каждая из которых расположена под углами от 10° до 35°, с возможностью изменения угла до 5°, при этом на передней стенке внутри корпуса установлен бокс для WEB-камеры, в котором размещена WEB-камера, соединенная с персональным компьютером USB проводом. Данное устройство может быть использовано для оценки физических параметров сыпучих материалов при моделировании с использованием DEM-метода различного оборудования, предполагающего использование сыпучих материалов. 5 ил.

Изобретение относится к устройствам для измерения статического (трения покоя) и динамического трений сыпучих материалов и может быть использовано в химической, горнорудной, фармацевтической, пищевой, металлургической и других отраслях промышленности.

Известен прибор для определения коэффициента силы трения покоя (патент RU №2247360, опубл. 27.02.2005 г.). Прибор содержит платформу, шарнирно закрепленную на станине, со шкалой, коробку без днища, заполненную вязкопластичным материалом, тяговое устройство, опорный контур с возможностью его регулирования по высоте посредством прокладок и направляющих, размещенных на плите. В слое материала размещены частицы, коробка без днища связана с платформой амортизирующим звеном с ограничительным поводком.

Недостатками данного прибора является низкая точность, связанная со сложностью конструкции, а именно со сложностью определения угла наклона по шкале; истиранием и обрывом нитей в области контакта с неподвижными блоками; необходимостью связывания сыпучего материала вязкопластичным материалом; отсутствием поправочных коэффициентов, связанных с использованием вязкопластичных материалов; нестабильной дискретностью изменения угла наклона платформы.

Известен прибор для определения коэффициента силы трения покоя (патент RU №2488094, опубл. 20.07.2013 г.), содержащий платформу, шарнирно закрепленную на станине, шкалу и тяговое устройство. На платформе закреплена пластина из исследуемого материала с продольными пазами полукруглой формы радиусом (R), большим максимального размера (rmах) кривизны контура поперечного сечения частиц исследуемого сыпучего материала, но с меньшим диаметром (2R) их длины (1).

Недостатками данного прибора является низкая точность, что связано с деформацией и дальнейшем провисании нитей тягового устройства при эксплуатации прибора; истиранием и обрывом нитей в области контакта с неподвижными блоками; необходимостью создания пластин из рассматриваемого сыпучего материала; использование пластин исследуемого материала в качестве альтернативы самому сыпучему материалу; сложностью определения угла наклона по шкале и зависимостью точности измерения от погрешности шкалы; нестабильной дискретностью изменения угла наклона платформы.

Известен прибор для определения коэффициента силы трения покоя (патент RU №2511615, опубл. 10.04.2014 г.), который содержит опорную платформу. Также прибор содержит коробку без днища, грузовую чашку, шнур, блок и нажимную платформу с грузами. При этом коробка без днища снабжена винтовыми опорами.

Недостатками данного прибора является низкая точность измерения, что обуславливается влиянием дополнительных параметров, в том числе отсутствие поправочного коэффициента относительно влияния винтовой опоры на конечный результат получаемой силы трения; зависимостью точности измерения от используемых гирь; растяжение и провисание нити при избыточной нагрузке; истиранием нити в области контакта с угловой поверхностью опорной платформы; истиранием и формированием излишне шероховатой или излишне гладкой поверхности опорной платформы под действием винтовой опоры и сыпучего материала.

Известно устройство для определения момента трения скольжения при испытании фрикционных муфт предельного момента (патент RU №2064668, опубл. 27.07.1996 г.) содержащее приводной двигатель и нагрузочную машину в виде двигателя постоянного тока независимого возбуждения, которые подсоединены к ведущей и ведомой полумуфтам. Источник тока подключен к якорю двигателя постоянного тока. Валы датчиков скоростей подключены к ведомой и ведущей полумуфтам, а выходы датчиков скоростей, а также датчики токов якоря и возбуждения нагрузочной машины - к вычислительному блоку.

Недостатками данного устройства являются высокая степень механизации, наличие громоздкого оборудования; влияние магнитного и электрического полей на показатели датчиков необходимость использования выпрямителей переменного тока; износ коллектора двигателя.

Известно устройство для измерения динамического трения (патент US №4594878, опубл. 24.06.1983 г.), содержащее участок измерения трения, имеющий диск с прикрепленным к нему резиновым элементом для измерения трения, приводной диск, выполненный с возможностью вращения соосно с диском, и динамометр, который соединяет диск и приводной диск. Тахометр измеряет скорость резинового элемента во время вращения участка измерения трения. Регистратор X-Y записывает два электрических выхода участка измерения трения и тахометра в прямоугольные координаты.

Недостатками данного устройства является истирание вспомогательных деталей конструкции, в том числе шкивов, стержней и дисков, наличие громоздкого оборудования; повышенный уровень шума при проведении эксперимента; необходимость высокоточной соосной центровки.

Известно устройство для измерения угла естественного откоса сыпучих материалов способ прогнозирования уноса пылевидного угля с использованием устройства (патент KR 20130120674 А, опубл. 05.11.2013 г.), которое содержит опорную пластину, которая расположена на днище, и наклонную пластину, которая шарнирно соединена с одной стороны опорной пластины, двигатель привода крепится ко днищу, намотан вокруг вращающегося вала приводного двигателя на другой стороне концов наклонной пластины Измерение степени измельчения и внутренней влажности пылевидного угля с использованием устройства для измерения угла естественного откоса порошка, реализуется за счет неподвижной проволоки и контейнера, верхняя поверхность которого открыта и заполнена пылевидным углем и расположена на верхней поверхности наклонной пластины. Этап измерения угла естественного откоса пылевидного угля и степени измельчения пылевидного угля, а также внутренней влажности и угла естественного откоса использовался для расчета следующей формулы: Индекс впитывания пылевидного угля = -1,5 * Угол покоя -31,1 * Удельная влажность -0,2 * Степень пульверизации +143,7 Способ прогнозирования уноса пылевидного угля обеспечивается посредством этапа вычисления индекса уноса пылевидного угля.

Недостатками данного устройства является истиранием и обрывом нитей в области контакта с неподвижными блоками, зависимость точности определения угла наклона пластины от гониометра, зависимость дискретизации угла наклона пластины от вида используемого двигателя и его технических показателей.

Известен прибор для определения угла естественного откоса песчаных грунтов УBT-З, (https://www.geo-ndt.ru/pribor-3330-pribor-opredeleniya-ygla-estestvennogo-otkosa-peskov-yvt-3m.htm;

https://znaytovar.ru/gost/2/RSN_5184_Inzhenernye_izyskaniy.html в приложении 10) принятый за прототип, состоящий из параллелепипеда, выполненного из прозрачного материала, внутрь которого подвешивается бункер подачи сыпучего материал разделенный на две части для параллельного измерения угла откоса для двух материалов. На стенках бункера, выполненного из прозрачного материала высечена шкала, позволяющая определить необходимый угол наклона для естественного высыпания угла.

Недостатками данного устройства являются сложность визуальной оценки угла откоса по нанесенной шкале в следствии отсутствие контрастных цветов и малого размера бункера; низкая точность метода, связанная со сложностью соблюдения необходимой дискретности при изменении угла наклона вручную; зависимость точности определения угла наклона от погрешности измерения нанесенной шкалой.

Техническим результатом является создание устройства с повышенной точностью определения, достигнутой за счет минимизации количества движущихся деталей, использования WEB-камеры и алгоритмов прогнозирования, а также использования 6 полок, расположенных под разными углами для охвата всего возможного диапазона коэффициента трения.

Технический результат достигается тем, что внутри корпуса параллельно передней стенке закреплена с возможностью съема внутренняя стенка, в основание корпуса выполнено отверстие прямоугольной формы под бункером для подачи сыпучих материалов, в которое установлено выдвижная панель с ручкой, крышка прямоугольной формы с отверстием прямоугольной формы, которое выполнено над бункером для подачи сыпучих материалов, который выполнен в форме трапеции и жестко закреплен к верхней части задней стенки корпуса, в нижней части бункера для подачи сыпучих материалов вмонтирована задвижка с ручкой, которая установлена в салазки закрепленные в поддерживающие оси, внутри корпуса к задней стенке с одной стороны и внутренней стенке с другой стороны крепятся с возможностью снятия, измерительные полки, каждая из которых расположена под углами от 10° до 35°, с возможностью изменения угла до 5°, при этом на передней стенки внутри корпуса установлен бокс для WEB-камеры, в котором размещена WEB-камера, соединенная с персональным компьютером USB проводом.

Устройство для определения статического и динамического трений сыпучих материалов поясняется следующими фигурами:

фиг. 1 - вид спереди устройства для определения статического и динамического трений сыпучих материалов

фиг. 2 - вид сбоку устройства для определения статического и динамического трений сыпучих материалов

фиг. 3 - вид сзади устройства для определения статического и динамического трений сыпучих материалов

фиг. 4 - вид сзади ручки задвижки бункеров подачи сыпучего материала

фиг. 5 - 3D модель устройства для определения статического и динамического трений сыпучих материалов, где:

1 - корпус;

2 - измерительная полка под углом 10°;

3 - измерительная полка под углом 15°;

4 - измерительная полка под углом 20°;

5 - измерительная полка под углом 25°;

6 - измерительная полка под углом 30°;

7 - измерительная полка под углом 35°;

8 - выдвижная панель;

9 - ручка;

10 - задвижка

11 - бункеры подачи сыпучего материала;

12 - ручка задвижки;

13 - бокс для web - камеры;

14 - WEB-камера;

15 - USB провод;

16 - персональный компьютер;

17 - салазки для передвижения задвижки;

18 - поддерживающая ось для передвижения задвижки;

19 - внутренняя стенка;

20 - задняя стенка;

21 - основание;

22 - передняя стенка;

23 - крышка

Устройство для определения статического и динамического трений сыпучих материалов содержит (фиг. 1-5) корпус 1 с крышкой 23. Корпус 1 выполненный в форме параллелепипеда. В основании 21 корпуса 1 выполнено отверстие прямоугольной формы под бункером для подачи сыпучих материалов 11, в которое установлено выдвижная панель 8 с ручкой 9. Внутри корпуса 1 параллельно передней стенке закреплена с возможностью съема внутренняя стенка 19 из оргстекла, прозрачного пластика или иных прозрачных материалов, устойчивых к истиранию. Крышка 23 прямоугольной формы с отверстием такой же формы над бункерами для подачи сыпучих материалов 11.

Внутри к верхней части задней стенки 20 корпуса 1 жестко крепятся бункеры подачи сыпучего материала 11 трапециевидной формы, с задвижкой 10. На задвижке 10 жестко закреплена ручка задвижки 12, задвижкой 10 установлена в салазки для передвижения задвижки 17, которые закреплены в поддерживающей оси для передвижения задвижки 18.

Внутри корпуса 1 к задней стенке 20 и прозрачной стенке 19 крепятся с возможностью съема, саморезами или винтами, измерительная полка под углом 10° 2, измерительная полка под углом 15° 3, измерительная полка под углом 20° 4, измерительная полка под углом 25° 5, измерительная полка под углом 30° 6, измерительная полка под углом 35° 7, измерительные полки выполненные с изменением угла в 5°. Расстояние между измерительными полками выбирают равным шести диаметрам частицы, при этом диаметр частиц не должен превышать 10 мм, для предотвращения застраивания материала.

Бокс для WEB-камеры вмонтирован на передней стенки 22 внутри корпуса 1 в него установлена WEB-камера 14, соединенная с персональным компьютером 16 USB проводом 15.

Устройство для определения статического и динамического трений сыпучих материалов работает следующим образом. В бункеры подачи сыпучего материала 11 подается исследуемое сыпучее вещество. После чего выдвигается задвижка 10 посредством ее вытягивания из паза за ручку задвижки 12. Задвижка 10 двигается по салазкам для передвижения задвижки 17, расположенным в поддерживающей оси для передвижения задвижки 18 до тех пор, пока не зафиксируется в корпусе 1. Сыпучий материал скатывается по измерительная полка под углом 10° 2, измерительная полка под углом 15° 3, измерительная полка под углом 20° 4, измерительная полка под углом 25° 5, измерительная полка под углом 30° 6, измерительная полка под углом 35° 7 на выдвижное днище 8. Ход эксперимента фиксируется на WEB-камеру 14, установленную в бокс для WEB-камеры 13 и фиксирующая проведение эксперимента через внутреннюю стенку 19. Получаемый видеофайл передается через USB провод 15 на персональный компьютер 16. После проведения эксперимента выдвижная панель 8 выдвигается посредством вытягивания ручки 9 и сыпучий материал удаляется.

Данное устройство может быть использовано для оценки физических параметров сыпучих материалов при моделировании с использованием DEM-метода различного оборудования, предполагающее использование сыпучих материалов.

Устройство для определения статического и динамического трений сыпучих материалов, содержащее корпус в форме параллелепипеда и бункер подачи сыпучего материала, выполненные из прозрачного материала, отличающийся тем, что внутри корпуса параллельно передней стенке закреплена с возможностью съема внутренняя стенка, в основании корпуса выполнено отверстие прямоугольной формы под бункером для подачи сыпучих материалов, в которое установлены выдвижная панель с ручкой, крышка прямоугольной формы с отверстием прямоугольной формы, которое выполнено над бункером для подачи сыпучих материалов, который выполнен в форме трапеции и жестко закреплен к верхней части задней стенки корпуса, в нижней части бункера для подачи сыпучих материалов вмонтирована задвижка с ручкой, которая установлена в салазки, закрепленные в поддерживающие оси, внутри корпуса к задней стенке с одной стороны и внутренней стенке с другой стороны крепятся с возможностью снятия измерительные полки, каждая из которых расположена под углами от 10° до 35°, с возможностью изменения угла до 5°, при этом на передней стенке внутри корпуса установлен бокс для WEB-камеры, в котором размещена WEB-камера, соединенная с персональным компьютером USB проводом.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО И ДИНАМИЧЕСКОГО ТРЕНИЙ СЫПУЧИХ МАТЕРИАЛОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО И ДИНАМИЧЕСКОГО ТРЕНИЙ СЫПУЧИХ МАТЕРИАЛОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО И ДИНАМИЧЕСКОГО ТРЕНИЙ СЫПУЧИХ МАТЕРИАЛОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО И ДИНАМИЧЕСКОГО ТРЕНИЙ СЫПУЧИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 11-20 of 204 items.
13.01.2017
№217.015.815c

Устройство для бурения горных пород

Изобретение относится к горной промышленности и может быть использовано для бурения скважин в рыхлых, слабо-связных и средне-твердых горных породах, а также для посадки свай при строительстве. Устройство содержит желонку, механизм ударного действия, элемент подвеса, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002601877
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8179

Способ обогащения и переработки железных руд

Изобретение относится к обогащению и переработке железных руд и может быть использовано в горнорудной и металлургической промышленности. Способ обогащения и переработки железных руд включает измельчение руды, магнитную сепарацию. Исходную руду измельчают и подвергают низкоинтенсивной магнитной...
Тип: Изобретение
Номер охранного документа: 0002601884
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81a0

Шагающее устройство для подводной добычи полезных ископаемых

Изобретение относится к горному делу, в частности к устройствам для подводной добычи твердых полезных ископаемых. Устройство может быть использовано также для геологоразведочных изысканий, прокладки газо- и нефтепроводов, освоения торфяных месторождений. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002601880
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.830f

Способ получения топливных брикетов

Изобретение раскрывает способ получения топливных брикетов, включающий смешение углеродсодержащих материалов и их формование, при этом смешивают отходы деревообработки, продукты пылеулавливания процессов деревообработки и сланцепереработки. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002601743
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8391

Комбинированный способ получения судовых высоковязких топлив и нефтяного кокса

Изобретение раскрывает комбинированный способ получения судовых высоковязких топлив и нефтяного кокса, включающий использование легкого и тяжелого газойлей коксования, характеризующийся тем, что при перегонке нефти выделяют фракцию вакуумного газойля, 95% которого выкипает в пределах от 350 до...
Тип: Изобретение
Номер охранного документа: 0002601744
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83f4

Способ подготовки тяжелой нефти к переработке

Изобретение относится к способу подготовки тяжелой нефти к переработке, включающему эмульгирование нефтепродукта путем интенсивного кавитационного воздействия. Причем до эмульгирования тяжелую нефть обрабатывают в магнитном поле с помощью неодимовых магнитов до снижения вязкости, а затем...
Тип: Изобретение
Номер охранного документа: 0002601747
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.88ea

Способ подготовки шихты в глиноземном производстве

Изобретение может быть использовано в цветной металлургии для приготовления шихты при производстве глинозема из низкокачественного алюмосиликатного сырья. Способ подготовки шихты включает измельчение алюмосиликатного сырья на содовом растворе в мельнице, гидроциклонирование пульпы по классу...
Тип: Изобретение
Номер охранного документа: 0002602564
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.899a

Способ возведения закладочного массива

Изобретение относится к горной промышленности и может быть использовано при подземной разработке полезных ископаемых преимущественно в условиях криолитозоны (в многолетнемерзлых породах) системами с закладкой выработанного пространства при формировании закладочного массива. Техническим...
Тип: Изобретение
Номер охранного документа: 0002602565
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.96a2

Стенд для исследования энергообмена при сдвиге

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002608695
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.a54d

Способ переработки железомарганцевых конкреций

Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений. Способ включает операции измельчения, сульфатизирующего обжига и выщелачивания огарка. При этом обжиг осуществляют...
Тип: Изобретение
Номер охранного документа: 0002607873
Дата охранного документа: 20.01.2017
Showing 1-2 of 2 items.
25.08.2017
№217.015.b967

Способ обнаружения подводных ферромагнитных объектов и система для обнаружения подводных ферромагнитных объектов

Изобретение относится к разведке с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов. Сущность: буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного...
Тип: Изобретение
Номер охранного документа: 0002615050
Дата охранного документа: 03.04.2017
12.04.2023
№223.018.4448

Способ переработки калийных сильвинитовых руд

Предложенное изобретение относится к области обогащения калийных сильвинитовых руд, содержащих нерастворимые в воде фракции, представленные глинистыми разностями. Способ переработки калийных сильвинитовых руд включает рудоподготовку, термическую обработку и электрическую сепарацию руды....
Тип: Изобретение
Номер охранного документа: 0002738400
Дата охранного документа: 11.12.2020
+ добавить свой РИД