×
09.09.2019
219.017.c961

СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта. Для этого характеристики грунтов определяют по данным измерения деформаций. Способ заключается в многоцикловом нагружении-разгружении нескольких образцов одного и того же грунта с различной влажностью в жесткой цилиндрической камере одной постоянной ступенью статического давления, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения каждого образца грунта его вертикальной деформации после нагружения и вертикального расширения после разгружения с погрешностью 0,01 мм. Для определения момента окончания многоциклового нагружения-разгружения образца используют коэффициент упругой работы грунта и оценивают стабильность его значений в 6-ти последних циклах по коэффициенту вариации. Кроме характеристик грунта, определяемых известными способами, рассчитывают объемное содержание минеральных частиц в грунте, а также объемное содержание упруго деформирующейся воды. Последний показатель является постоянным для данного грунта и может служить мерой его глинистости или его характерным влагосодержанием. Изобретение обеспечивает повышение достоверности и надежности получаемых результатов. 16 табл., 3 ил., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к строительному грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта и для классификации глинистых грунтов по их строительным свойствам.

Известен способ уплотнения грунта до максимальной плотности при оптимальной влажности грунта, заключающийся в многоцикловом нагружении-разгружении нескольких образцов одного и того же грунта с различной влажностью в жесткой цилиндрической камере одной ступенью статического давления, прикладываемой без удара и выдерживаемой в течение суток после нагружения и после разгружения. Ступень давления для первого образца грунта принимают 0,2 МПа, для второго - 0,4 МПа, для третьего - 0,6 МПа. Циклы нагружения-разгружения повторяют до тех пор, пока наблюдается монотонное убывание значений характеристик остаточных деформаций в каждом цикле. Как только эти значения начинают увеличиваться, что соответствует достижению точности опытов, испытания прекращают [Методические рекомендации по опробованию лессовых грунтов. - М., ЦНИИС Минтрансстроя СССР, 1982. - 88 с., пп. 3.71-3.72] и определяют характеристики грунта. Подобным образом фиксируют состояние незавершенной упругой компрессии. Все деформативные показатели относят к первому и последнему циклам нагружения-разгружения. Состояние незавершенной компрессии наступает через 2-8 циклов. Переход от незавершенной к завершенной компрессии производится на основе данных первых двух циклов нагружения-разгружения. Далее определяют коэффициенты пористости, обеспечивающие практически упругую работу оснований сооружений.

Недостатками способа являются:

- многосуточная длительность многоциклового нагружения-разгружения каждого образца грунта;

- ненадежное определение момента окончания многоциклового нагружения-разгружения по остаточной деформации, значение которой частично зависит от случайных величин, например, перекоса штампа прибора;

- определение момента окончания испытания каждого образца грунта производится без использования природной способности грунта к стабилизации работы деформации;

- малое число определяемых характеристик грунта: позволяет определять только деформационные показатели и коэффициент пористости.

Известен способ определения максимальной плотности и оптимальной влажности грунта, заключающийся в 10-тицикловом нагружении-разгружении нескольких образцов одного и того же грунта с различной влажностью в жесткой цилиндрической камере одной стандартной ступенью статического давления, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения каждого образца грунта его вертикальной осадки после нагружения и вертикального расширения после разгружения с погрешностью 0,01 мм и расчете деформационных характеристик грунта. Для каждого образца грунта с различной влажностью производят 10 циклов нагружения-разгружения с интервалами 5 с между циклами [Руководство по геотехническому контролю за подготовкой оснований и возведением грунтовых сооружений в энергетическом строительстве. РД 34 15.073-91. - Л.: ВНИИГидротехники им. Б.Е. Веденеева, 1991. - 434 с., пп. 7.12.4-7.12.5 (прототип)] и определяют плотность и влажность грунта. Испытания образцов с различной влажностью заканчивают тогда, когда с повышением влажности грунта последующих двух-трех образцов грунта происходит последовательное уменьшение значений плотности грунта или когда грунт перестает уплотняться и начинает при нагружении выжиматься из жесткой цилиндрической камеры. По полученным при испытаниях образцов грунта значениям плотности и влажности определяют плотность сухого грунта и строят график зависимости плотности сухого грунта от влажности, на котором находят максимум полученной зависимости и соответствующие ему величины максимальной плотности сухого грунта и оптимальной влажности.

Недостатками способа являются:

необоснованно одинаковое 10-тицикловое нагружение-разгружение для каждого образца разных грунтов;

- окончание нагружения-разгружения каждого образца фунта производится без обоснования достаточности 10-ти циклов;

- низкая достоверность результатов испытаний вследствие разного состояния грунта при разной влажности и одинаковом числе циклов нагружения-разгружения;

- малое число определяемых характеристик грунта: позволяет определять только деформационные характеристики, максимальную плотность и оптимальную влажность.

Задача изобретения - повышение достоверности результатов испытаний путем обоснования момента окончания многоциклового нагружении-разгружения образцов грунта и увеличение числа определяемых характеристик грунта.

Технический результат изобретения достигается тем, что в способе определения характеристик грунтов по данным измерения деформаций, заключающемся в многоцикловом нагружении-разгружении нескольких образцов одного и того же грунта с различной влажностью в жесткой цилиндрической камере одной постоянной ступенью статического давления, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке, регистрации в каждом цикле нагружения-разгружения каждого образца грунта его вертикальной осадки после нагружения и вертикального расширения после разгружения с погрешностью 0,01 мм, расчете характеристик грунта и удельной работы уплотнения и расширения по данным измерения деформаций, согласно изобретения, для определения момента окончания многоциклового нагружения-разгружения образца используют коэффициент упругой работы грунта и оценивают стабильность его значений в 6-ти последних циклах по коэффициенту вариации

где Ke.i-5,…,Ke.i - коэффициенты упругой работы грунта в 6-ти последних циклах нагружения-разгружения образца грунта, определяемые по формуле

где k и i - номер цикла и полное число циклов нагружения-разгружения образца грунта;

Aun.k и Aun.e.k - удельная работа уплотнения и удельная работа упругого расширения образца грунта в k-м цикле нагружения-разгружения, кДж/м3, определяемые по формулам

где Δsk и Δue.k - осадка и упругое расширение образца грунта в k-м цикле нагружения-разгружения, мм;

hk и he.k-1 - высота образца грунта после уплотнения и упругого расширения в k-м цикле нагружения-разгружения, мм;

Δр - разность начального и конечного значений давления в цикле нагружения-разгружения, принятая постоянной для всех циклов нагружения-разгружения всех образцов одного и того же грунта с различной влажностью, кПа,

а по результатам многоциклового нагружения-разгружения для каждого образца грунта, кроме характеристик грунта, определяемых известными способами, рассчитывают новые характеристики:

- объемное содержание в грунте упруго деформирующейся воды по формуле

- объемное содержание минеральных частиц в грунте по формуле

где ne.i - пористость образца грунта после i-го цикла нагружения-разгружения,

и объемное содержание воды, участвующей в неупругой части деформации грунта, по формуле

где W - весовая влажность образца грунта после i-го цикла нагружения-разгружения,

ρW - плотность воды, г/см3,

ρs - плотность минеральных частиц грунта, г/см3,

при этом погрешность определения значений коэффициента упругой работы грунта, объемного содержания в грунте упруго деформирующейся воды и объемного содержания минеральных частиц оценивают методами статистической обработки результатов испытаний при многоцикловом нагружении-разгружении не менее 6-ти образцов одного и того же грунта с различной влажностью по коэффициенту вариации значений этих характеристик.

Новизна заявляемого технического решения обусловлена тем, что многоцикловое нагружение-разгружение каждого образца грунта до достижения стабильного значения коэффициента упругой работы грунта в 6-ти последних циклах нагружения-разгружения с оценкой по коэффициенту вариации: var{Kei-5, …, Ke.i)≤0,05 - обеспечивает более точное определение момента окончания многоциклового нагружения-разгружения каждого образца грунта на основе использования природной способности грунта к стабилизации работы деформации и т.о. повышает достоверность определения характеристик грунтов, а также позволяет, кроме характеристик, определяемых известными способами, определять объемное содержание в грунте упруго деформирующейся воды, объемное содержание минеральных частиц и объемное содержание воды, участвующей в неупругой части деформации грунта. А так как способностью к упругой деформации обладает прочносвязанная вода, адсорбированная на поверхности глинистых минералов и имеющая аномальные физико-механические характеристики [Злочевская Р.И. Связанная вода в глинистых грунтах / Под ред. Е.М. Сергеева. - М.: Изд-во МГУ, 1969. - 176 с.], объемное содержание упруго деформирующейся воды может служить мерой глинистости грунта, или его характерным влагосодержанием, так как является постоянным для данного грунта.

Также новизна заявляемого технического решения обусловлена тем, что дополнительно определяемые характеристики грунтов являются более надежными для классификации грунтов в строительных целях, потому что для их определения не требуется приготовление грунтовой пасты, а используется грунт с естественными ненарушенными микроагрегатами, причем определение дополнительных характеристик производится одновременно с определением максимальной плотности и оптимальной влажности грунта, при этом способ определения этих дополнительных характеристики грунта является новым.

Таким образом, совокупность указанных отличительных признаков является сущностью изобретения, обеспечивающей его новизну, изобретательский уровень и промышленную применимость.

Пояснения к заявляемому способу определения максимальной плотности и оптимальной влажности грунта схематично изображены на:

фиг. 1 - графики приращений вертикальной осадки и вертикального упругого расширения Δue.k образца грунта в нескольких циклах нагружения-разгружения при изменении давления от 5 кПа до 500 кПа;

фиг. 2 - графики изменения объемного содержания в грунте упруго деформирующейся воды qe, объемного содержания минеральных частиц qss и объемного содержания воды qW, участвующей в неупругой части деформации грунта, полученные экспериментально в нескольких циклах нагружения-разгружения.

Способ определения максимальной плотности и оптимальной влажности грунта осуществляют следующим образом.

Для применения способа используют любой прибор, имеющий жесткую цилиндрическую камеру с подвижным жестким штампом, устройство приложения и снятия нагрузки и измерители перемещения штампа. В качестве такого прибора может быть взят любой компрессионный прибор, например, стандартный компрессионный прибор КПр-1 [Руководство по геотехническому контролю за подготовкой оснований и возведением грунтовых сооружений в энергетическом строительстве. РД 34 15.073-91. - Л.: ВНИИ-Гидротехники им. Б.Е. Веденеева, 1991. - 434 с., прилож. 7.В], у которого одометр представляет собой жесткую цилиндрическую камеру с подвижным жестким штампом, рычажное устройство - устройство для приложения и снятия нагрузки, а индикаторы часового типа ИЧ-10 - измерители перемещения штампа.

Из подготовленного для испытания измельченного грунта с известной влажностью отбирают навеску грунта определенной массы, в зависимости от объема жесткой цилиндрической камеры, в которой будут производиться испытания. Отобранную навеску грунта загружают в жесткую цилиндрическую камеру, разравнивают, накрывают жестким подвижным штампом, устанавливают измерители перемещения штампа, нагружают начальным статическим давлением, значение которого согласуют с давлением на строительной площадке от транспортных механизмов, выдерживают в течение 10 мин для формирования связного образца грунта и регистрируют показания измерителей перемещения штампа.

Затем образец грунта нагружают до конечного давления одной ступенью статического давления, значение которого согласуют с давлением уплотнения на строительной площадке, выдерживают в течение 5 с и регистрируют показания измерителей перемещения штампа, а затем образец грунта разгружают до начального значения давления одной ступенью, выдерживают в течение 5 с и регистрируют показания измерителей перемещения штампа.

Аналогичным образом производят многоцикловое нагружение-разгружение образца грунта одной ступенью статического давления (Фиг. 1) до достижения стабильного значения коэффициента упругой работы грунта в 6-ти последних циклах нагружения-разгружения с коэффициентом вариации

где Ke.i-5, …, Ke.i - коэффициенты упругой работы грунта в 6-ти последних циклах нагружения-разгружения образца грунта, определяемые по формуле

где k и i - номер цикла и полное число циклов нагружения-разгружения образца грунта;

Аun.k и Аun.е.k - удельная работа уплотнения и удельная работа упругого расширения образца грунта в k-м цикле нагружения-разгружения, кДж/м3, определяемые по формулам

где Δsk и Δue.k - осадка и упругое расширение образца грунта в k-м цикле нагружения-разгружения, мм;

hk и he.k-1 - высота образца грунта после уплотнения и упругого расширения в k-м цикле нагружения-разгружения, мм;

Δр - разность начального и конечного значений давления в цикле нагружения-разгружения, принятая постоянной для всех циклов нагружения-разгружения всех образцов одного и того же грунта с различной влажностью, кПа.

Затем образец грунта полностью разгружают и определяют его плотность, влажность, коэффициент пористости и плотность сухого грунта [ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик. - М.: Стандартинформ, 2016. - 24 с.].

Аналогичным образом производят многоцикловое нагружение-разгружение не менее 6-ти образцов одного и того же грунта с различной влажностью. Испытания образцов одного и того же грунта с различной влажностью заканчивают тогда, когда с повышением влажности грунта последующих двух-трех образцов грунта происходит последовательное уменьшение значений плотности грунта или когда грунт перестает уплотняться и начинает при нагружении выжиматься из жесткой цилиндрической камеры.

По результатам испытания всех образцов одного и того же грунта с различной влажностью строят график зависимости плотности сухого грунта от влажности, по максимуму которого определяют максимальную плотность и оптимальную влажность грунта. Кроме этих характеристик грунтов по результатам многоциклового нагружения-разгружения для каждого образца грунта рассчитывают (Фиг. 2):

- объемное содержание в грунте упруго деформирующейся воды по формуле

- объемное содержание минеральных частиц в грунте по формуле

где ne.i - пористость образца грунта после i-го цикла нагружения-разгружения,

- объемное содержание воды, участвующей в неупругой части деформации грунта, по формуле

где W - весовая влажность образца грунта после i-го цикла нагружения-разгружения,

ρW - плотность поровой воды, г/см3,

ρs - плотность минеральных частиц образца грунта, г/см3.

При этом погрешность определения значений коэффициента упругой работы грунта и объемного содержания в грунте упруго деформирующейся воды, как постоянных для данного грунта величин, оценивают методами статистической обработки результатов испытаний [ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний. - М.: Стандартинформ, 2013. - 20 с.] по многоцикловому нагружению-разгружению не менее 6-ти образцов одного и того же грунта с различной влажностью по коэффициенту вариации значений этих характеристик.

В частности, для этих характеристик определяют:

- среднее значение по формуле

- среднее квадратическое отклонение от среднего значения по формуле

- коэффициент вариации по формуле

где Хn и Хm - соответственно среднее арифметическое и частные значения (m=1…n) измеряемой величины; n - число определений;

S и V - среднее квадратическое значение и коэффициент вариации измеряемой величины.

Таким образом, изобретение использует природную способность грунта к стабилизации работы деформации, причем стабилизировавшиеся значения дают коэффициент упругой работы, не зависящий от влажности грунта. Оно позволяет более точно определять момент окончания испытания каждого образца грунта при определении максимальной плотности и оптимальной влажности грунтов и, соответственно, повышает достоверность и надежность получаемых характеристик грунтов и увеличивает при этом число получаемых характеристик грунтов, что создает возможность управлять их соотношением в процессе формирования грунтового сооружения из насыпного грунта путем изменения содержания глинистых фракций грунта и числа циклов уплотнения и т.о. создает определенный технико-экономический эффект.

Кроме того, дополнительные характеристики грунтов, получаемые при использовании изобретения, позволяют классифицировать глинистые грунты по объемному содержанию упруго деформирующейся воды, которое является постоянной для данного грунта величиной, а следовательно, более надежным и поддающимся объективной оценке показателем содержания в них глинистых минералов, чем определяемый известными в строительном грунтоведении способами, к тому же не требующим отдельного эксперимента и соответствующего ему оборудования.

ПРИЛОЖЕНИЕ 2

Пример реализации способа определения характеристик грунтов

1. Способ определения характеристик грунтов реализован в стандартном компрессионном приборе Кпр-1 Гидропроекта, позволяющем осуществлять нагружение и разгружение образца грунта в одну ступень Δp=500 кПа и измерять деформации уплотнения и расширения датчиками перемещения часового типа ИЧ-10. Использовали глинистый грунт - пылеватый суглинок, раздробленный и пропущенный через сито с диаметром ячеек 1,0 мм, а затем смешанный с водой для получения образцов заданной влажности.

Расчеты характеристик грунта приведены в таблицах 1-15.

2. По данным измерений осадки образца грунта и упругого расширения образца , а также измерений высоты образца h после i-го цикла нагружения-разгружения в компрессионном приборе вычислены значения высоты образца в каждом промежуточном k-м цикле (k=1…i): после нагружения h и после разгружения (таблицы 1-15).

Удельная работа уплотнения рассчитана в столбце для каждого цикла по значениям осадки и упругому расширению образца в k-м цикле. Удельная работа упругого расширения рассчитана в столбце для каждого цикла по значениям упругого расширения образца в k-м цикле.

Суммарная работа уплотнения рассчитана в столбце , суммарная работа упругого расширения - в столбце . Коэффициент упругой работы рассчитан в столбце . Его значения стабилизируются с увеличением числа циклов нагружения-разгружения (рисунок 1).

Значение коэффициента упругой работы для ввода в сводную таблицу 16 взято по последнему значению в столбце и при условии, что

где i - номер последнего выполненного цикла нагружения-разгружения образца грунта.

Выполнение этого условия ограничивает число циклов нагружения-разгружения образца грунта. Если условие (1) не выполняется в последнем цикле, то испытание продолжается, и после выполнения следующего цикла условие (1) проверяется вновь, и так далее, пока условие (1) не будет выполнено, и тогда индекс "i " примет окончательное значение.

3. После разгружения в i-м цикле измерены высота и масса образца и весовая влажность грунта W. Вычисленное i -е значение пористости содержится в нижней строке столбца Все промежуточные значения пористости при упругом расширении вычислены по данным упругого расширения образца , по последнему значению пористости при упругом расширении по значениям пористости при уплотнении и по значениям относительной деформации расширения

Все значения пористости при уплотнении вычислены по данным осадки образца и по значениям относительной деформации уплотнения .

В столбцах «Объемные доли фаз» вычислены значения объемного содержания в грунте упруго деформирующейся воды , минеральных частиц и воды, участвующей в неупругой деформации грунта .

4. В сводной таблице 16 представлены характеристики фунта, полученные в конце испытания многоцикловым нагружением-разгружением и отвечающих условию (1). Данные двух испытаний исключены из рассмотрения по техническим условиям: грунт выжимается из прибора (таблицы 3 и 15).


СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПЛОТНОСТИ И ОПТИМАЛЬНОЙ ВЛАЖНОСТИ ГРУНТА
Источник поступления информации: Роспатент

Showing 21-30 of 465 items.
20.01.2018
№218.016.11d8

Способ предпосевной обработки семян озимой пшеницы

Изобретение относится к области сельского хозяйства. Предложен способ предпосевной обработки семян озимой пшеницы, включающий покрытие семян гидрофобным пленкообразователем. В качестве гидрофобного пленкообразователя используют сплав парафина с подсолнечным воском при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002634278
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.122e

Способ активации стартовых культур для приготовления сырокопченых колбас

Изобретение относится к мясной промышленности, а именно к активации стартовых культур при помощи электромагнитного поля низких частот. Стартовые культуры Альми 2 в количестве от 5 до 9,5 г растворяют в воде с температурой от 15 до 24°C в количестве 50 см и добавляют 10 г декстрозы. Тщательно...
Тип: Изобретение
Номер охранного документа: 0002634273
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1242

Способ контроля развития эмбриона сельскохозяйственной птицы

Изобретение относится к птицеводству, а именно к инкубации яиц сельскохозяйственной птицы. Включает отбор яиц, закладку в инкубатор и инкубацию при регулировании температуры. Для регулирования температуры используют частоту сердечных сокращений эмбриона, которую измеряют, начиная с 6-го дня...
Тип: Изобретение
Номер охранного документа: 0002634274
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.124e

Способ борьбы с сорной растительностью

Изобретение относится к области сельского хозяйства. При осуществлении способа борьбы с сорной растительностью обрабатывают воду в проточном активаторе. Полученный анолит перемешивают с гербицидом. Осуществляют опрыскивание почвы полученным гербицидным раствором. Опрыскивание проводят в...
Тип: Изобретение
Номер охранного документа: 0002634277
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1273

Способ стимулирования укоренения черенков винограда

Изобретение относится к области сельского хозяйства, а именно к виноградарству. Способ включает нарезку черенков с глазками и их последующее замачивание в водной среде. При этом двуглазковые черенки винограда толщиной 7-9 мм и длиной около 40 см в горизонтальном положении замачивают в емкости с...
Тип: Изобретение
Номер охранного документа: 0002634280
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.12ea

Способ получения производных 2-арил(гетарил)-7-метил-1,2,3,4-тетрагидропиридо[3',2':4,5]тиено[3,2-d]пиримидин-4-она

Изобретение относится к синтезу замещенных 1,2,3,4-тетрагидропиридо[3',2':4,5]тиено[3,2-d]пиримидин-4-онов общей формулы 1, включающему взаимодействие между 3-амино-6-метилтиено[2,3-b]пиридин-2-карбоксамидами 2а,б и ароматическими альдегидами 3а,в или...
Тип: Изобретение
Номер охранного документа: 0002634351
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.16d9

Устройство для защиты от образования отложений на поверхностях трубопроводов систем теплоснабжения

Изобретение относится к области защиты металлов от коррозии и образования отложений на поверхностях трубопроводов систем теплоснабжения и водоснабжения. Устройство включает циркуляционный насос, сообщенный через соединительный трубопровод с котлом, трубопровод подачи воды, обратный трубопровод...
Тип: Изобретение
Номер охранного документа: 0002635591
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.16e6

Аппарат для инструментального осеменения пчелиных маток

Изобретение относится к пчеловодству и предназначено для осуществления высокоэффективного инструментального осеменения пчелиных маток. Аппарат для инструментального осеменения пчелиных маток состоит из платформы 1 с закрепленной на ней подставкой 2 с возможностью перемещения вдоль продольной...
Тип: Изобретение
Номер охранного документа: 0002635691
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.170b

Способ производства рубленых мясорастительных полуфабрикатов функционального назначения

Изобретение относится к пищевой промышленности и может быть использовано при производстве рубленых мясорастительных полуфабрикатов для диетического питания. На волчке измельчают мясо кролика, затем к нему добавляют более жирное куриное мясо и продолжают измельчать до получения однородной массы....
Тип: Изобретение
Номер охранного документа: 0002635677
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.175f

Сеялка рядкового высева семян

Сеялка рядкового высева семян состоит из станины и бака с мешалкой, имеющей привод. Мешалка имеет кольцо со штоком, на котором расположены горизонтальные лопасти и лопасти-спирали. Последние выполнены в виде ленточной винтовой поверхности и установлены против друг друга. Горизонтальные...
Тип: Изобретение
Номер охранного документа: 0002635693
Дата охранного документа: 15.11.2017
Showing 11-19 of 19 items.
19.01.2018
№218.016.0802

Способ определения границ пластичности грунтов

Изобретение относится к области инженерных изысканий. В способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей w и k линейной зависимости влажности грунта на границе текучести от числа...
Тип: Изобретение
Номер охранного документа: 0002631616
Дата охранного документа: 25.09.2017
04.04.2018
№218.016.3181

Способ усиления основания фундамента

Изобретение относится к строительству и может быть использовано для повышения несущей способности фундаментов при усилении. Способ усиления основания фундамента включает отрывку траншеи, проходку микротоннелей путем бурения с установкой обсадных труб под подошвой фундамента и заполнение их...
Тип: Изобретение
Номер охранного документа: 0002645009
Дата охранного документа: 15.02.2018
09.06.2018
№218.016.5cd5

Датчик для измерения давления грунта

Изобретение относится к техническим устройствам для измерения давления в пластичных и сыпучих средах, в т.ч. грунтах. В датчике давления, включающем корпус 1, чувствительный элемент 2, измерительное приспособление 3 и силовоспринимающую систему с упором 11, силовоспринимающая система выполнена...
Тип: Изобретение
Номер охранного документа: 0002656136
Дата охранного документа: 31.05.2018
14.06.2018
№218.016.61f3

Способ определения границ пластичности грунтов

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения границ пластичности (раскатывания и текучести) грунтов. Сущность: осуществляют определение удельного сопротивления двух образцов одного и того же грунта при разной влажности погружению конусного...
Тип: Изобретение
Номер охранного документа: 0002657309
Дата охранного документа: 13.06.2018
06.12.2018
№218.016.a451

Устройство для отбора проб почвы

Изобретение относится к устройствам для отбора проб почвы при определении ее химического состава, влажности и содержания микроэлементов при возделывании сельскохозяйственных культур, а также на работах, связанных с мелиорацией. Устройство для отбора проб почвы включает заборный цилиндр с...
Тип: Изобретение
Номер охранного документа: 0002674134
Дата охранного документа: 04.12.2018
01.12.2019
№219.017.e92f

Способ определения характеристик набухания грунта

Изобретение относится к строительному грунтоведению и применяется при инженерно-геологических изысканиях для строительства на набухающих грунтах, в частности для определения давления набухания и деформации набухания грунтов при разных значениях давления. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002707624
Дата охранного документа: 28.11.2019
13.12.2019
№219.017.ecb4

Способ определения характеристик набухания грунта

Изобретение относится к строительному грунтоведению и применяется при инженерно-геологических изысканиях для строительства на набухающих грунтах, в частности, для определения свободного набухания и давления набухания грунтов. Техническим результатом изобретения является повышение точности и...
Тип: Изобретение
Номер охранного документа: 0002708768
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed01

Способ определения давления набухания грунта

Изобретение относится к строительному грунтоведению и применяется при инженерно-геологических изысканиях для строительства на набухающих грунтах, в частности для определения давления набухания грунтов. Техническим результатом изобретения является повышение точности и достоверности определения...
Тип: Изобретение
Номер охранного документа: 0002708767
Дата охранного документа: 11.12.2019
04.03.2020
№220.018.0869

Способ определения характеристик насыпного грунта

Изобретение относится к строительному грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта и в агрономии для качественной оценки агрономической ценности почвы по размерам почвенных агрегатов. Способ...
Тип: Изобретение
Номер охранного документа: 0002715588
Дата охранного документа: 02.03.2020
+ добавить свой РИД