×
06.09.2019
219.017.c7f8

СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания. Техническим результатом изобретения является повышение эффективности управления рабочим процессом в форсажной камере сгорания за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и корректировки места подачи топлива перед стабилизатором пламени в форсажной камере сгорания. Изобретение от известных отличается тем, что дополнительно введены последовательно соединенные датчик полного давления газового потока, установленный на выходе из форсажной камеры сгорания, регулятор положения распределительного крана топливных коллекторов, установленный на корпусе распределителя форсажного топлива, выход которого соединен со вторым входом распределителя форсажного топлива. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания.

Наиболее близким по технической сущности заявляемому изобретению является система подачи топлива форсажной камеры сгорания, содержащая последовательно соединенные форсажный насос, регулятор сопла и форсажа, распределитель форсажного топлива и N топливных коллекторов [«Турбореактивный двигатель с форсажной камерой сгорания АЛ-31Ф» учебное пособие, под редакцией А.П. Назарова. М.: ВВИА, 1987., с. 313].

Недостатком данной системы является низкая эффективность управления рабочим процессом в форсажной камере сгорания [Кудрявцев А.В., Медведев В.В. Форсажные камеры и камеры сгорания ПВРД. Инженерные методики расчета характеристик. Москва: ЦИАМ, 2013. 131 с.], обусловленная влиянием условий внешней среды на полноту сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 132].

Техническим результатом изобретения является повышение эффективности управления рабочим процессом в форсажной камере сгорания, за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и корректировки места подачи топлива перед стабилизатором пламени в форсажной камере сгорания.

Указанный технический результат достигается тем, что в известной системе подачи топлива форсажной камеры сгорания газотурбинного двигателя летательного аппарата, содержащей последовательно соединенные форсажный насос, регулятор сопла и форсажа, распределитель форсажного топлива и N топливных коллекторов, входы которых объединены и соединены с выходом распределителя форсажного топлива, а выходы являются выходом системы, согласно изобретения дополнительно введены последовательно соединенные датчик полного давления газового потока на выходе из форсажной камеры сгорания, регулятор положения распределительного крана топливных коллекторов выход которого соединен со вторым входом распределителя форсажного топлива.

Сущность изобретения заключается в том, что дополнительно введены последовательно соединенные датчик полного давления газового потока на выходе из форсажной камеры сгорания, установленный на штоке гидроцилиндра управления площадью критического сечения сопла, регулятор положения распределительного крана топливных коллекторов, установленный на корпусе распределителя форсажного топлива, при этом выход регулятора положения распределительного крана топливных коллекторов соединен со вторым входом распределителя форсажного топлива.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с], что значение положения рычага управления двигателем является режимным параметром и определяет количество подаваемого топлива в форсажную камеру сгорания.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с], что для заданного количества подаваемого топлива при сохранении постоянного расхода топлива, на выходе из форсажной камеры сгорания изменяется величина полного давления в зависимости от условий внешней среды. Повышение полного давления на выходе из форсажной камеры сгорания при сохранении неизменного расхода топлива свидетельствует о снижении эффективности сжигания топлива, за счет ухудшения образования топливовоздушной смеси перед стабилизатором пламени и снижении коэффициента полноты сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания.

В ходе исследований эффективности организации рабочего процесса в форсажной камере сгорания, проведенных в Военном учебно-научном центре Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» установлено, что требуемое значение коэффициента полноты сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания зависит от условий внешней среды. Так на режиме работы газотурбинного двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» топливо подается с первого топливного коллектора, расположенного непосредственно перед стабилизатором пламени. При изменении условий внешней среды параметры газового потока изменяются. Так, в частности при возрастании скорости газового потока время нахождения топлива в газовом потоке перед стабилизаторам пламени уменьшается. Это приводит к ухудшению качества подогрева топлива, то есть качества образования топливовоздушной смеси. Известно, что снижение качества топливовоздушной смеси, в свою очередь приводит к ухудшению процессов горения, и как следствие снижению коэффициента полноты сгорания топлива в циркуляционной зоне газового потока [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003., с. 161]. При снижении коэффициента полноты сгорания топлива в циркуляционной зоне газового потока фронт пламени смещается ближе к выходу из форсажной камеры сгорания и снижает степень подогрева газового потока, что обуславливает повышение величины полного давления на выходе из форсажной камеры сгорания. Для обеспечения требуемого значения коэффициента полноты сгорания топлива в циркуляционной зоне газового потока необходимо обеспечить заданное время нахождения топлива перед стабилизатором пламени, что возможно за счет увеличения пути которое проходит топливо в газовом потоке от впрыска в газовый поток до стабилизатора пламени.

Изменение полноты сгорания топлива в циркуляционной зоне газового потока возможно за счет изменения топливного коллектора, из которого происходит подача топлива в газовый поток, что соответствует изменению места с которого осуществляется подача топлива в газовый поток, который должен находится на большем удалении от стабилизатора пламени по сравнению с первым коллектором. Чем больше влияние условий внешней среды, тем более удаленный коллектор необходимо включать в работу. Таким образом при повышении давления на выходе из форсажной камеры сгорания датчик полного давления на выходе из форсажной камеры сгорания фиксирует действительное значение полного давления и передает информацию о нем в регулятор положения распределительного крана топливных коллекторов, где сигнал сравнивается с заданным программой управления значением величины полного давления и при несоответствии сигналов согласно программы управления вырабатывает сигнал об изменении топливного коллектора, из которого происходит подача топлива, который передается в распределитель форсажного топлива. Таким образом при необходимости изменения топливного коллектора, из которого происходит подача топлива в форсажную камеру сгорания распределитель форсажного топлива выключает первый коллектор и включает в работу второй или третий топливный коллектор, что зависит от величины разности заданного и действительного значения полного давления на выходе из форсажной камеры сгорания, при сохранении заданного расхода топлива в форсажную камеру сгорания.

Поэтому согласно изобретению, измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания, а также распределитель форсажного топлива измеряет количество подаваемого топлива, в зависимости от их значения изменяется место подачи топлива, за счет изменения коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. Отличием от существующей системы подачи топлива является то, что на режиме работы газотурбинного двигателя «ПОЛНЫЙ ФОРСАЖ» при аналогичном с прототипом расходе топлива, топливо подается не со всех коллекторов. Коллектора с которых осуществляется подача топлива определяется согласно программе управления, этим объясняется наличие дополнительных (дежурных) коллекторов в системе подачи топлива. Топливные коллектора располагаются на одинаковом расстоянии, друг от друга соответствующем характерному размеру стабилизатора пламени [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. -М.: Машиностроение, 2002. 616 с].

На фиг. 1 приведена программа управления величиной подаваемого топлива в форсажную камеру сгорания в зависимости от режима работы двигателя, где обозначено: αpyд min - минимальное значение положения рычага управления двигателем; αруд maх - максимальное значение положения рычага управления двигателем; Т*в mах - линия максимального расхода топлива при максимальном значение температуры воздуха на входе двигателя; Т*в- линия расчетного количества топлива при расчетном значении температуры воздуха на входе двигателя; Т*в min - линия минимального расхода топлива при минимальном значении температуры воздуха на входе двигателя; Стф мф - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Gтф мф mах - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя; Gтф мф min -величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; G пф mах - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gmф пф - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Gmф пф min - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя.

Из фиг. 1 видно, что каждому значению величины положения рычага управления двигателем соответствует заданное значение величины подаваемого топлива. При изменении положения рычага управления двигателем от режима работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» до режима работы двигателя «ПОЛНЫЙ ФОРСАЖ» расход топлива в форсажную камеру сгорания увеличивается, обеспечивая заданный режим работы двигателя. Из фиг. 1 также видно, что в зависимости от температуры воздуха на входе двигателя, чем выше температура на входе двигателя, тем больше расход топлива.

На фиг. 2 представлена программа управления местом подачи топлива в зависимости от количества подаваемого топлива в форсажную камеру сгорания, где обозначено: Gmф пф mах - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gmф мф min - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Р*ф min - линия места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф mах - линия места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф - линия места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания; Lкол мф min - значение места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф - значение места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф mах - значение места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол пф mах - значение места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф - значение места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф min - значение места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ».

Для обеспечения корректировки места подачи топлива по величине полного давления газового потока на выходе из форсажной камеры сгорания в распределителе форсажного топлива по сигналу от регулятора сопла и форсажа определяется потребное количество топлива, а по сигналу от регулятора положения распределительного крана топливных коллекторов осуществляется корректировка топливного коллектора, из которого подается топливо в газовый поток. Затем вычисляется относительный расход топлива, как указано в книге Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 131. Согласно зависимостей, приведенных в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 135 определяется, подогрев газового потока, зависящий от относительного расхода топлива. Величина полного давления на выходе из форсажной камеры сгорания зависит от подогрева газового потока, согласно приведенным в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 167 данным. Тем самым заложенный алгоритм расчета обеспечивает выработку заданного значения величины полного давления на выходе из форсажной камеры сгорания. Таким образом на основании рассчитанного количества, подаваемого в форсажную камеру сгорания топлива, в регуляторе положения распределительного крана топливных коллекторов определяется заданное значение полного давления газового потока на выходе из форсажной камеры сгорания, и сравнивается с действительным значением, полученным от датчика полного давления газового потока на выходе из форсажной камеры сгорания. В качестве датчика полного давления газового потока на выходе из форсажной камеры сгорания может быть использован, например, пьезоэлектрический датчик давления EL-SCADA RAV [https://el-scada.ru/davlenie/dinamicheskoe-davlenie/pezoelektricheskie-datchiki-dinamicheskogo-davleniya, дата обращения 31.05.2017]. Если действительное значение полного давления газового потока на выходе из форсажной камеры сгорания отличается от заданного в регуляторе положения распределительного крана топливных коллекторов вырабатывается сигнал о необходимости изменения топливного коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. При изменении места подачи топлива обеспечивается эффективное образование топливовоздушной смеси, что приводит к высокой полноте сгорания топлива в циркуляционной зоне газового потока. Заданное значение коэффициента полноты сгорания топлива в циркуляционной зоне газового потока находится в пределах от 0,8 до 0,85 см., например, [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. -М.: Машиностроение, 2003., с. 161].

Этим достигается указанный в изобретении технический результат.

Структурная схема системы подачи топлива в форсажную камеру сгорания приведена на фиг. 3, где обозначено: 1 - форсажный насос; 2 - регулятор сопла и форсажа; 3 - распределитель форсажного топлива; 4.1 - N - топливные коллектора; 5 - датчик полного давления газового потока на выходе из форсажной камеры сгорания; 6 - регулятор положения распределительного крана топливных коллекторов.

Назначение датчиков и элементов, входящих в систему ясны из их названия. Форсажный насос 1, регулятор сопла и форсажа 2, топливные коллектора 4.1 - N работают аналогично прототипу. Для обеспечения требуемого расхода топлива в форсажную камеру сгорания форсажный насос нагнетает топливо в систему и подает его на вход в регулятор сопла и форсажа, где поступившее топливо распределяется на топливный контур форсажной камеры сгорания и системы управления соплом, контур форсажного топлива поступает на вход распределителя форсажного топлива где оно распределяется по контурам согласно программе управления по расходу топлива. Для выработки управляющего воздействия в регуляторе положения распределительного крана топливных коллекторов 6 по сигналу от датчика полного давления газового потока на выходе из форсажной камеры сгорания 5, где он сравнивается с заданным значением величины полного давления на выходе из форсажной камеры сгорания, вырабатывается сигнал о необходимости изменения топливного коллектора, из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени, согласно программе управления, поступающий в распределитель форсажного топлива 3, который обеспечивает расход топлива в форсажную камеру сгорания аналогично прототипа, а также осуществляет корректировку топливного коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. Таким образом, осуществляется коррекция места подачи топлива в форсажную камеру сгорания перед стабилизатором пламени при изменении условий внешней среды.

Регулятор положения распределительного крана топливных коллекторов предназначен для определения топливного коллектора через который должна осуществляться подача топлива в газовый поток перед стабилизатором пламени на основании получаемых данных от датчика полного давления на выходе из форсажной камеры сгорания и расчета по численным зависимостям величины полного давления газового потока на выходе из форсажной камеры сгорания от количества, подаваемого в форсажную камеру сгорания топлива и условий внешней среды. Конструктивно регулятор положения распределительного крана топливных коллекторов может быть выполнен различными способами и включает в себя целый комплекс состоящий из программно-задающего устройства, элементов сравнения, исполнительных механизмов. Он может быть, как электронным, так и гидромеханическим аналогично существующим регуляторам. Его конструкция зависит от специфических особенностей газотурбинного двигателя на котором он входит в состав системы управления подачи топлива в форсажную камеру сгорания.

Система подачи топлива в форсажную камеру сгорания, содержащая последовательно соединенные форсажный насос, регулятор сопла и форсажа, распределитель форсажного топлива, а также N топливных коллекторов, входы которых объединены и соединены с выходом распределителя форсажного топлива, а выходы являются выходом системы, отличающаяся тем, что дополнительно введены последовательно соединенные датчик полного давления газового потока, установленный на выходе из форсажной камеры сгорания, регулятор положения распределительного крана топливных коллекторов, установленный на корпусе распределителя форсажного топлива, выход которого соединен со вторым входом распределителя форсажного топлива.
СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ
СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ
СИСТЕМА ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 244 items.
25.08.2017
№217.015.9bc8

Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение...
Тип: Изобретение
Номер охранного документа: 0002610150
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.bb52

Способ управления приемниками воздушного давления

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и...
Тип: Изобретение
Номер охранного документа: 0002615813
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bf3b

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617210
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.bf46

Способ формирования маршрута носителя пеленгатора

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета. Достигаемый технический результат - формирование маршрута носителя пеленгатора, определяющего местоположение излучателя, при котором достигается...
Тип: Изобретение
Номер охранного документа: 0002617127
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfc3

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002617157
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c160

Способ определения дальности до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения дальности с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617447
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c5b9

Фазовый пеленгатор

Изобретение относится к области радиотехники и может использоваться в радиомониторинге при поиске источников радиоизлучения на ограниченной территории и в помещениях, например, специальных электронных устройств перехвата информации. Достигаемый технический результат изобретения - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002618522
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c61d

Способ буксировки самолетов с использованием малогабаритного буксировщика с дистанционным управлением

Изобретение относится к наземному обеспечению воздушных судов, в частности к их буксированию. Способ буксировки реализуется использованием малогабаритного буксировщика с дистанционным управлением, включающего рампу (8) механизма подъема и фиксации колес передней стойки воздушного судна и...
Тип: Изобретение
Номер охранного документа: 0002618611
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.cb3f

Способ измерения задержки радиосигналов

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный...
Тип: Изобретение
Номер охранного документа: 0002620131
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb48

Способ амплитудного двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – обеспечение двухмерного всеракурсного пеленгования одновременно в двух...
Тип: Изобретение
Номер охранного документа: 0002620130
Дата охранного документа: 23.05.2017
Showing 1-10 of 16 items.
20.10.2014
№216.013.0055

Устройство для сжигания топлива в газотурбинном двигателе

Устройство для сжигания топлива в газотурбинном двигателе содержит наружный и внутренний корпусы, образующие кольцевую полость, в которой установлены неподвижные и подвижные разделители потоков, образующие чередующиеся первичные и вторичные каналы. На наружном корпусе кольцевой полости в каждом...
Тип: Изобретение
Номер охранного документа: 0002531477
Дата охранного документа: 20.10.2014
27.11.2015
№216.013.93d7

Система управления камерой сгорания изменяемой геометрии газотурбинного двигателя летательного аппарата

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы камеры сгорания изменяемой геометрии, т.е. изменяемого объема и изменяемого проходного сечения отверстий жаровой трубы. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002569466
Дата охранного документа: 27.11.2015
13.01.2017
№217.015.8886

Способ управления основной камерой сгорания газотурбинного двигателя

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), основанного на программном изменении коэффициента избытка воэдуха в первичной зоне горения. Техническим результатом изобретения является повышение эффективности управления рабочим процессом основной...
Тип: Изобретение
Номер охранного документа: 0002602705
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.e955

Сопло газотурбинного двигателя летательного аппарата

Изобретение относится к области авиадвигателестроения, а именно к защите летательного аппарата с газотурбинными двигателями от поражения ракетами с тепловой головкой самонаведения. Сопло газотурбинного двигателя летательного аппарата образовано каналом переменной формы и выполнено...
Тип: Изобретение
Номер охранного документа: 0002627813
Дата охранного документа: 11.08.2017
10.05.2018
№218.016.4b7b

Устройство для сжигания топлива в газотурбинном двигателе

Изобретение относится к области турбостроения, в частности к устройствам для сжигания топлива, и может быть использовано в основных камерах сгорания (ОКС) газотурбинных двигателей. Техническим результатом изобретения является снижение неравномерности поля температур в выходном сечении ОКС в...
Тип: Изобретение
Номер охранного документа: 0002651692
Дата охранного документа: 23.04.2018
04.07.2018
№218.016.6ab9

Многоканальная акустико-эмиссионная система контроля силовых элементов конструкций

Использование: для контроля силовых элементов конструкций. Сущность изобретения заключается в том, что многоканальная акустико-эмиссионная система контроля силовых элементов конструкций состоит из N-каналов, каждый из которых содержит последовательно соединенные преобразователь акустической...
Тип: Изобретение
Номер охранного документа: 0002659575
Дата охранного документа: 03.07.2018
17.08.2018
№218.016.7ce3

Фронтовое устройство форсажной камеры сгорания газотурбинного двигателя

Изобретение относится к области авиационных газотурбинных двигателей, а именно к форсажным камерам сгорания авиационных газотурбинных двигателей. Техническим результатом изобретения является снижение потерь полного давления за счет применения в качестве стабилизаторов пламени тел...
Тип: Изобретение
Номер охранного документа: 0002663965
Дата охранного документа: 13.08.2018
01.09.2018
№218.016.81f2

Система управления форсажной камерой сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим...
Тип: Изобретение
Номер охранного документа: 0002665569
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.8217

Способ управления форсажной камерой сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим...
Тип: Изобретение
Номер охранного документа: 0002665567
Дата охранного документа: 31.08.2018
06.09.2019
№219.017.c7c8

Способ подачи топлива в форсажную камеру сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя, а именно к способу управления режимами работы форсажной камеры сгорания. Способ подачи топлива в форсажную камеру сгорания, включающий измерение положения рычага управления двигателем, измерение полного...
Тип: Изобретение
Номер охранного документа: 0002699322
Дата охранного документа: 04.09.2019
+ добавить свой РИД