×
06.09.2019
219.017.c7d8

Результат интеллектуальной деятельности: СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК

Вид РИД

Изобретение

Аннотация: Изобретение относится к области трубопроводного транспорта и может быть использовано при сооружении и ремонте вскрытого от грунта участка подземного трубопровода из стальных труб. Технический результат изобретения - упрощение проведения центровки труб при их сварке встык при одновременном повышении соосности центрируемых труб с исключением повреждения трубопровода. Способ центровки труб при их сварке встык включает применение трубоукладчиков и центратора, обеспечение соосности сопрягаемых труб путем их перемещения. Соосность центрируемых труб обеспечивают расстановкой трубоукладчиков по длине вскрытого от грунта участка трубопровода. Количество и необходимые усилия подъема трубопровода трубоукладчиками, расстояния между ними определяют решением предложенной системы уравнений. 1 ил.

Изобретение относится к области трубопроводного транспорта и может быть использовано при сооружении и ремонте вскрытого от грунта участка подземного трубопровода из стальных труб.

Соединение труб сваркой встык, отвечающее требованиям нормативных документов, предполагает выполнение центровки, в результате которой две сопрягаемые трубы становятся соосными. Обеспечение соосности сопрягаемых труб достигается их перемещениями с целью достижения ими единой продольной оси. Эта работа трудоемка, особенно при наличии начальных отклонений по направлению к пространственному положению осей соединяемых труб.

Совмещение осей труб, то есть их центровку, производят трубоукладчиками. Усилия центровки в условиях наличия значительных отклонений начальных положений осей соединяемых труб и центровки труб больших диаметров достигают существенных значений. В связи с этим в ряде случаев при центровке труб используют десятки трубоукладчиков. Несмотря на это работа по центровке труб при их сварке встык занимает недопустимо по современным требованиям много времени. Причиной этого является отсутствие аналитических зависимостей между технологическими параметрами центровки труб, что не позволяет заблаговременно принять и использовать эти параметры при выполнении работы.

Известен способ центровки труб при их сварке встык при сооружении трубопроводов на опорах [Петров И.П., Спиридонов В.В. Надземная прокладка трубопроводов. - М.: Недра, 1965 г. - С. 218-224]. Способ позволяет определить высотные положения опор для обеспечения соосности соединяемых труб и определить усилия поддержки трубопровода опорами в условиях обеспечения центровки. Недостатком известного способа является невозможность его использования при наличии первоначальных отклонений положений продольных осей соединяемых труб в вертикальной и горизонтальной плоскостях.

Наиболее близким техническим решением является способ центровки труб при их сварке встык, включающий применение трубоукладчиков и центратора, обеспечение соосности сопрягаемых труб, путем их перемещения [Таран В.Д. Сооружение магистральных трубопроводов. - М.: Недра, 1964 г. - С. 116-118, 122-128]. Способ позволяет определить потребное количество трубоукладчиков исходя из необходимости обеспечения прочности труб при подъеме трубопровода. Недостатком данного способа является отсутствие решений по рациональным перемещениям труб трубоукладчиками и расстоянию между ними, отсутствие определения необходимого количества трубоукладчиков с целью обеспечения центровки труб при их сварке встык, связанная с этим сложность достижения соосности стыкуемых труб, а также возможность повреждения трубопровода из-за неопределенности его перемещений, протяженности изогнутого и вскрытого участков.

Технический результат изобретения - упрощение проведения центровки труб при их сварке встык при одновременном повышении соосности стыкуемых труб с исключением повреждения трубопровода.

Технический результат в способе центровки труб при их сварке встык достигается тем, что соосность центрируемых труб обеспечивают расстановкой трубоукладчиков по длине вскрытого от грунта участка трубопровода, при этом количество и необходимые усилия подъема трубопровода трубоукладчиками, расстояния между ними определяют решением системы уравнений:

при а1=0; ai+1=1,25ai (i≥2) и

где

- расстояние от i-го сечения подъема до сечения центровки;

- длина изогнутого участка трубопровода;

qT - вес трубопровода единичной длины;

n - количество трубоукладчиков, участвующих в центровке;

i - номер сечения подъема трубопровода трубоукладчиком;

- расстояние от i-го сечения до сечения центровки труб;

а также производят удаление грунта над участком трубопровода, прилегающим к дефектному, при этом протяженность удаления грунта определяют из условия

где Е - модуль упругости металла трубы;

I - момент инерции поперечного сечения трубы;

ν0 - величина несоосности центрируемых труб;

qT - вес трубопровода единичной длины;

а - безразмерный параметр изогнутого участка трубопровода, определяемый в зависимости от технологических параметров центровки труб.

Сущность способа заключается в следующем. При ремонте участка подземного трубопровода центрируемые участки трубопровода 1 и 2 центруют с помощью трубоукладчиков с усилием подъема Pi на расстоянии от центрируемого торца трубопровода до сечения приложения усилия Pi (где i-номер сечения) по всей длине изогнутого участка в ремонтном котловане 3 (фиг. 1). Соосность центрируемых участков трубопровода 1 и 2 обеспечивают вскрытием участка трубопровода, прилегающего к дефектному, протяженностью , и рациональной расстановкой трубоукладчиков, что позволит устранить несоосность центрируемых труб ν0.

Так как трубы могут иметь разрешенные стандартами ограниченные по величине отклонения по толщине стенки и наружному диаметру от номинальных размеров, поэтому центраторы обеспечивают повышение качества соединения труб встык. Кроме того, центратор фиксирует соосность стыкуемых труб при сварке их встык. Так как центратор по своей конструкции может воспринимать только ограниченное усилие, то соосность может быть обеспечена предлагаемым техническим решением. С учетом этого в предлагаемом способе усилие подъема трубопровода в сечении стыка принято минимальным, что упрощает работу. Достижение соосности стыкуемых труб обеспечивает надежную эксплуатацию трубопровода. Дефекты соединения труб являются причиной многих аварий трубопроводных систем.

Обоснование системы уравнений для определения количества и усилий подъема трубопровода трубоукладчиками, а также условия протяженности вскрытого участка трубопровода

1. Изгиб засыпанного грунтом участка повышает усилие подъема трубопровода и напряжения изгиба в трубопроводе. Усилия подъема трубопровода трубоукладчиком Pi, расстояние li от центрируемого торца трубопровода до сечения приложения усилия Pi (где i-номер сечения) определяются решением системы уравнений:

где

n - количество трубоукладчиков, участвующих в центровке;

- длина изогнутого участка трубопровода;

qT - вес трубопровода единичной длины;

- расстояние от i-го сечения подъема до сечения центровки.

Длина изогнутого участка определяется по формуле:

где Е - модуль упругости металла трубы;

I - момент инерции поперечного сечения трубы;

ν0 - величина несоосности центрируемых труб;

а - безразмерный параметр, определяемый по формуле:

В процессе центровки в стенке труб возникают напряжения изгиба, определяемые по формуле:

где

W - момент сопротивления поперечного сечения трубы.

Расчетные уравнения (1) - (7) получены из условия, что в сечении соединения труб встык (фиг. 1, сечение х=0) обеспечивается соосность этих труб, то есть продольная ось одной трубы является продолжением продольной оси другой трубы.

Совместным решением уравнений (1), (2), (3) и (4), задавая необходимое количество технологических параметров, вычисляются остальные значения указанных параметров. Первый (счет ведется от центрируемого конца труб) трубоукладчик следует установить непосредственно в конце поднимаемого участка и необходимое усилие подъема трубопровода этим трубоукладчиком принять значительно меньше, чем другими трубоукладчиками. Такие решения существенно облегчают достижение соосности труб в процессе работы, повышают качество и понижают продолжительность центровки труб. С целью обеспечения однотипности используемых трубоукладчиков (кроме первого) следует принять равенство усилий подъема Р23=…=Pn. С целью снижения необходимых усилий центровки трубоукладчики следует располагать ближе к центрируемому концу трубопровода с соблюдением безопасных условий работы этих трубоукладчиков.

После вычисления технологических параметров центровки труб по формуле (5) определяются напряжения изгиба в стенке трубы в сечениях его подъема трубоукладчиками, в которых возникают наибольшие напряжения.

Вычисление технологических параметров центровки по уравнениям (1)-(4) и определение напряжений по (5) позволяют обоснованно принимать технологические параметры центровки труб при их сварке встык и количество используемых трубоукладчиков, исключить повреждение трубопровода при центровке, совершенствовать организацию и проведение работы с повышением ее качества.

В качестве примера определим технологические параметры центровки труб с наружным диаметром 720 мм, толщиной стенки 10 мм при величине несоосности ν0=50 мм. Вес трубопровода единичной длины Примем количество трубоукладчиков n=3 шт. Для определения искомых величин имеем два уравнения с двумя неизвестными и а2. В результате вычислений находим а2=0,32; а3=0,40; Параметр а вычислим по формуле и а=1,81. Вычислено, что длина изогнутого участка трубопровода Принято с учетом условия Необходимые усилия подъема трубопровода трубоукладчиками: Р1=242 кгс; Р23=2420 кгс; По значениям Р1, P2, Р3 производится подбор соответствующих трубоукладчиков. С увеличением количества трубоукладчиков уменьшаются значения Pi, то есть усилие подъема одним трубоукладчиком.

Обеспечение прочности трубопровода в процессе центровки достигается выполнением условия σиi≤R2. Здесь σиi - наибольшие напряжения изгиба в трубопроводе, возникающие в сечениях приложения сил его подъема. А значение где m, k2, kн - коэффициенты, принимаемые по СП 36.13330.2012 «Магистральные трубопроводы». Для рассматриваемого примера m=0,99, k2=1,15, kн=1,1. Величина - нормативное сопротивление растяжению (сжатию) металла труб, принимаемое равным минимальному значению предела текучести стали и равно 360 МПа для рассматриваемого примера.

Имеем R2=282 МПа. Напряжения изгиба определяются по формуле где Mi - изгибающий момент; W - момент сопротивления поперечного сечения трубопровода и равен 3893 см3. Изгибающий момент определяется по формуле где параметр wi в сечении приложения усилия подъема Р2 вычисляется по формуле а в сечении приложения усилия Р3 по формуле Кроме того, Е=2,06⋅105 МПа - модуль упругости металла трубопровода и I=140140 см4 - момент инерции поперечного его сечения. Имеем w2=0,26 и w3=0,24. Наибольшее напряжение изгиба σи2=26,2 МПа. Условие σиi≤R2 соблюдается, то есть в процессе центровки прочность трубопровода обеспечена. При необходимости увеличением количества трубоукладчиков снижаются значения наибольших напряжений изгиба.

Таким образом, определение технологических параметров решением предложенной системы уравнений позволяет обеспечивать соосность центрируемых труб с соблюдением условий прочности трубопровода.


СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
Источник поступления информации: Роспатент

Showing 21-30 of 167 items.
29.12.2017
№217.015.f213

Способ получения эфиров сорбитана и жирных кислот

Изобретение относится к способу получения сложных эфиров сорбитана, являющихся поверхностно-активными веществами, который может быть использован в химической промышленности. В предложенном способе получения сложных эфиров жирных кислот и сорбитана растительные масла взаимодействуют...
Тип: Изобретение
Номер охранного документа: 0002636743
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f24d

Способ производства сжиженного природного газа

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях. Способ производства сжиженного природного газа включает подачу потока сжатого природного газа из магистрального трубопровода высокого давления...
Тип: Изобретение
Номер охранного документа: 0002636966
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f353

Способ предупреждения гидратообразования в промысловых системах сбора газа

Изобретение относится к области добычи природного газа, в частности к области предупреждения гидратообразования в системах промыслового сбора газа преимущественно в условиях Крайнего Севера. Технический результат - оптимизация расхода ингибитора гидратообразования и повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002637541
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f4ec

Система автоматической подачи ингибитора гидратообразования в шлейфы газового промысла

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую...
Тип: Изобретение
Номер охранного документа: 0002637245
Дата охранного документа: 01.12.2017
19.01.2018
№218.015.ffc6

Дорожно-строительный композиционный материал на основе бурового шлама

Изобретение относится к строительным материалам, используемым для укладки в качестве дорожного покрытия дороги IV категории, а также для сооружения насыпей земляного полотна и укрепления грунтовых оснований строительных и других площадок. Технический результат - увеличение прочности покрытий и...
Тип: Изобретение
Номер охранного документа: 0002629634
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00b4

Способ получения этил(2е, 4е)-5-хлорпента-2,4-диеноата

Изобретение относится к области органической химии, в частности к способу получения этил(2E,4E)-5-хлорпента-2,4-диеноата. Этил(2E,4E)-5-хлорпента-2,4-диеноат является перспективным исходным соединением в синтезе (2E,4E)-диеновых кислот и их производных. Результаты изобретения могут быть...
Тип: Изобретение
Номер охранного документа: 0002629665
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0142

Установка для раздельного измерения дебита нефтяных скважин по нефти, газу и воде

Изобретение относится к измерительной технике и предназначено для измерения продукции нефтяных и газоконденсатных скважин раздельно по компонентам - нефти, газу и воде, в том числе и как эталонное средство для уточнения среднесуточных дебитов скважины по компонентам. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002629787
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.015d

Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов

Изобретение относится к способу очистки непроточных водоемов от нефтепродуктов и тяжелых металлов, загрязненных техногенными потоками водонефтяных эмульсий, поступающих от действующих многие годы предприятий нефтехимии и нефтепереработки. Способ осуществляется путем использования сорбента,...
Тип: Изобретение
Номер охранного документа: 0002629786
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.03fd

Способ очистки непроточных водоёмов от тяжелых металлов и нефтепродуктов

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества. Извлекают донный осадок и воду....
Тип: Изобретение
Номер охранного документа: 0002630552
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.040d

Устройство для измерения толщины граничных слоев смазочных материалов

Изобретение относится к устройствам для измерения толщины граничных слоев смазочных материалов и может найти применение в нефтегазовой отрасли. Сущность: устройство включает стол-основание (1), закрепленную на нем вертикально цилиндрическую трубку (3), крышку (4) и микрометр (8). Поверх крышки...
Тип: Изобретение
Номер охранного документа: 0002630545
Дата охранного документа: 11.09.2017
Showing 1-3 of 3 items.
17.02.2018
№218.016.2e61

Устройство для обеспечения проектного положения подземного трубопровода при прокладке в условиях многолетнемёрзлых грунтов

Изобретение относится к строительству и эксплуатации магистральных трубопроводов и используется при прокладке трубопровода на участках с многолетнемерзлыми грунтами. Устройство для обеспечения проектного положения подземного трубопровода при прокладке в условиях многолетнемерзлых грунтов...
Тип: Изобретение
Номер охранного документа: 0002643914
Дата охранного документа: 06.02.2018
29.05.2018
№218.016.569c

Способ прокладки подземного трубопровода в болотистой местности на болотах i типа

Изобретение относится к области строительства, эксплуатации и ремонта трубопроводов, транспортирующих газ, нефть и другие продукты и может быть использовано при прокладке подземного трубопровода в болотистой местности на болотах I типа. Способ заключается в разработке узкой траншеи специальной...
Тип: Изобретение
Номер охранного документа: 0002654557
Дата охранного документа: 21.05.2018
24.07.2020
№220.018.380d

Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного...
Тип: Изобретение
Номер охранного документа: 0002727732
Дата охранного документа: 23.07.2020
+ добавить свой РИД