×
06.09.2019
219.017.c7d8

СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области трубопроводного транспорта и может быть использовано при сооружении и ремонте вскрытого от грунта участка подземного трубопровода из стальных труб. Технический результат изобретения - упрощение проведения центровки труб при их сварке встык при одновременном повышении соосности центрируемых труб с исключением повреждения трубопровода. Способ центровки труб при их сварке встык включает применение трубоукладчиков и центратора, обеспечение соосности сопрягаемых труб путем их перемещения. Соосность центрируемых труб обеспечивают расстановкой трубоукладчиков по длине вскрытого от грунта участка трубопровода. Количество и необходимые усилия подъема трубопровода трубоукладчиками, расстояния между ними определяют решением предложенной системы уравнений. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области трубопроводного транспорта и может быть использовано при сооружении и ремонте вскрытого от грунта участка подземного трубопровода из стальных труб.

Соединение труб сваркой встык, отвечающее требованиям нормативных документов, предполагает выполнение центровки, в результате которой две сопрягаемые трубы становятся соосными. Обеспечение соосности сопрягаемых труб достигается их перемещениями с целью достижения ими единой продольной оси. Эта работа трудоемка, особенно при наличии начальных отклонений по направлению к пространственному положению осей соединяемых труб.

Совмещение осей труб, то есть их центровку, производят трубоукладчиками. Усилия центровки в условиях наличия значительных отклонений начальных положений осей соединяемых труб и центровки труб больших диаметров достигают существенных значений. В связи с этим в ряде случаев при центровке труб используют десятки трубоукладчиков. Несмотря на это работа по центровке труб при их сварке встык занимает недопустимо по современным требованиям много времени. Причиной этого является отсутствие аналитических зависимостей между технологическими параметрами центровки труб, что не позволяет заблаговременно принять и использовать эти параметры при выполнении работы.

Известен способ центровки труб при их сварке встык при сооружении трубопроводов на опорах [Петров И.П., Спиридонов В.В. Надземная прокладка трубопроводов. - М.: Недра, 1965 г. - С. 218-224]. Способ позволяет определить высотные положения опор для обеспечения соосности соединяемых труб и определить усилия поддержки трубопровода опорами в условиях обеспечения центровки. Недостатком известного способа является невозможность его использования при наличии первоначальных отклонений положений продольных осей соединяемых труб в вертикальной и горизонтальной плоскостях.

Наиболее близким техническим решением является способ центровки труб при их сварке встык, включающий применение трубоукладчиков и центратора, обеспечение соосности сопрягаемых труб, путем их перемещения [Таран В.Д. Сооружение магистральных трубопроводов. - М.: Недра, 1964 г. - С. 116-118, 122-128]. Способ позволяет определить потребное количество трубоукладчиков исходя из необходимости обеспечения прочности труб при подъеме трубопровода. Недостатком данного способа является отсутствие решений по рациональным перемещениям труб трубоукладчиками и расстоянию между ними, отсутствие определения необходимого количества трубоукладчиков с целью обеспечения центровки труб при их сварке встык, связанная с этим сложность достижения соосности стыкуемых труб, а также возможность повреждения трубопровода из-за неопределенности его перемещений, протяженности изогнутого и вскрытого участков.

Технический результат изобретения - упрощение проведения центровки труб при их сварке встык при одновременном повышении соосности стыкуемых труб с исключением повреждения трубопровода.

Технический результат в способе центровки труб при их сварке встык достигается тем, что соосность центрируемых труб обеспечивают расстановкой трубоукладчиков по длине вскрытого от грунта участка трубопровода, при этом количество и необходимые усилия подъема трубопровода трубоукладчиками, расстояния между ними определяют решением системы уравнений:

при а1=0; ai+1=1,25ai (i≥2) и

где

- расстояние от i-го сечения подъема до сечения центровки;

- длина изогнутого участка трубопровода;

qT - вес трубопровода единичной длины;

n - количество трубоукладчиков, участвующих в центровке;

i - номер сечения подъема трубопровода трубоукладчиком;

- расстояние от i-го сечения до сечения центровки труб;

а также производят удаление грунта над участком трубопровода, прилегающим к дефектному, при этом протяженность удаления грунта определяют из условия

где Е - модуль упругости металла трубы;

I - момент инерции поперечного сечения трубы;

ν0 - величина несоосности центрируемых труб;

qT - вес трубопровода единичной длины;

а - безразмерный параметр изогнутого участка трубопровода, определяемый в зависимости от технологических параметров центровки труб.

Сущность способа заключается в следующем. При ремонте участка подземного трубопровода центрируемые участки трубопровода 1 и 2 центруют с помощью трубоукладчиков с усилием подъема Pi на расстоянии от центрируемого торца трубопровода до сечения приложения усилия Pi (где i-номер сечения) по всей длине изогнутого участка в ремонтном котловане 3 (фиг. 1). Соосность центрируемых участков трубопровода 1 и 2 обеспечивают вскрытием участка трубопровода, прилегающего к дефектному, протяженностью , и рациональной расстановкой трубоукладчиков, что позволит устранить несоосность центрируемых труб ν0.

Так как трубы могут иметь разрешенные стандартами ограниченные по величине отклонения по толщине стенки и наружному диаметру от номинальных размеров, поэтому центраторы обеспечивают повышение качества соединения труб встык. Кроме того, центратор фиксирует соосность стыкуемых труб при сварке их встык. Так как центратор по своей конструкции может воспринимать только ограниченное усилие, то соосность может быть обеспечена предлагаемым техническим решением. С учетом этого в предлагаемом способе усилие подъема трубопровода в сечении стыка принято минимальным, что упрощает работу. Достижение соосности стыкуемых труб обеспечивает надежную эксплуатацию трубопровода. Дефекты соединения труб являются причиной многих аварий трубопроводных систем.

Обоснование системы уравнений для определения количества и усилий подъема трубопровода трубоукладчиками, а также условия протяженности вскрытого участка трубопровода

1. Изгиб засыпанного грунтом участка повышает усилие подъема трубопровода и напряжения изгиба в трубопроводе. Усилия подъема трубопровода трубоукладчиком Pi, расстояние li от центрируемого торца трубопровода до сечения приложения усилия Pi (где i-номер сечения) определяются решением системы уравнений:

где

n - количество трубоукладчиков, участвующих в центровке;

- длина изогнутого участка трубопровода;

qT - вес трубопровода единичной длины;

- расстояние от i-го сечения подъема до сечения центровки.

Длина изогнутого участка определяется по формуле:

где Е - модуль упругости металла трубы;

I - момент инерции поперечного сечения трубы;

ν0 - величина несоосности центрируемых труб;

а - безразмерный параметр, определяемый по формуле:

В процессе центровки в стенке труб возникают напряжения изгиба, определяемые по формуле:

где

W - момент сопротивления поперечного сечения трубы.

Расчетные уравнения (1) - (7) получены из условия, что в сечении соединения труб встык (фиг. 1, сечение х=0) обеспечивается соосность этих труб, то есть продольная ось одной трубы является продолжением продольной оси другой трубы.

Совместным решением уравнений (1), (2), (3) и (4), задавая необходимое количество технологических параметров, вычисляются остальные значения указанных параметров. Первый (счет ведется от центрируемого конца труб) трубоукладчик следует установить непосредственно в конце поднимаемого участка и необходимое усилие подъема трубопровода этим трубоукладчиком принять значительно меньше, чем другими трубоукладчиками. Такие решения существенно облегчают достижение соосности труб в процессе работы, повышают качество и понижают продолжительность центровки труб. С целью обеспечения однотипности используемых трубоукладчиков (кроме первого) следует принять равенство усилий подъема Р23=…=Pn. С целью снижения необходимых усилий центровки трубоукладчики следует располагать ближе к центрируемому концу трубопровода с соблюдением безопасных условий работы этих трубоукладчиков.

После вычисления технологических параметров центровки труб по формуле (5) определяются напряжения изгиба в стенке трубы в сечениях его подъема трубоукладчиками, в которых возникают наибольшие напряжения.

Вычисление технологических параметров центровки по уравнениям (1)-(4) и определение напряжений по (5) позволяют обоснованно принимать технологические параметры центровки труб при их сварке встык и количество используемых трубоукладчиков, исключить повреждение трубопровода при центровке, совершенствовать организацию и проведение работы с повышением ее качества.

В качестве примера определим технологические параметры центровки труб с наружным диаметром 720 мм, толщиной стенки 10 мм при величине несоосности ν0=50 мм. Вес трубопровода единичной длины Примем количество трубоукладчиков n=3 шт. Для определения искомых величин имеем два уравнения с двумя неизвестными и а2. В результате вычислений находим а2=0,32; а3=0,40; Параметр а вычислим по формуле и а=1,81. Вычислено, что длина изогнутого участка трубопровода Принято с учетом условия Необходимые усилия подъема трубопровода трубоукладчиками: Р1=242 кгс; Р23=2420 кгс; По значениям Р1, P2, Р3 производится подбор соответствующих трубоукладчиков. С увеличением количества трубоукладчиков уменьшаются значения Pi, то есть усилие подъема одним трубоукладчиком.

Обеспечение прочности трубопровода в процессе центровки достигается выполнением условия σиi≤R2. Здесь σиi - наибольшие напряжения изгиба в трубопроводе, возникающие в сечениях приложения сил его подъема. А значение где m, k2, kн - коэффициенты, принимаемые по СП 36.13330.2012 «Магистральные трубопроводы». Для рассматриваемого примера m=0,99, k2=1,15, kн=1,1. Величина - нормативное сопротивление растяжению (сжатию) металла труб, принимаемое равным минимальному значению предела текучести стали и равно 360 МПа для рассматриваемого примера.

Имеем R2=282 МПа. Напряжения изгиба определяются по формуле где Mi - изгибающий момент; W - момент сопротивления поперечного сечения трубопровода и равен 3893 см3. Изгибающий момент определяется по формуле где параметр wi в сечении приложения усилия подъема Р2 вычисляется по формуле а в сечении приложения усилия Р3 по формуле Кроме того, Е=2,06⋅105 МПа - модуль упругости металла трубопровода и I=140140 см4 - момент инерции поперечного его сечения. Имеем w2=0,26 и w3=0,24. Наибольшее напряжение изгиба σи2=26,2 МПа. Условие σиi≤R2 соблюдается, то есть в процессе центровки прочность трубопровода обеспечена. При необходимости увеличением количества трубоукладчиков снижаются значения наибольших напряжений изгиба.

Таким образом, определение технологических параметров решением предложенной системы уравнений позволяет обеспечивать соосность центрируемых труб с соблюдением условий прочности трубопровода.


СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
СПОСОБ ЦЕНТРОВКИ ТРУБ ПРИ ИХ СВАРКЕ ВСТЫК
Источник поступления информации: Роспатент

Showing 1-10 of 167 items.
12.01.2017
№217.015.5b28

Реагент комплексного действия для буровых промывочных жидкостей на водной основе

Изобретение относится к бурению нефтяных и газовых скважин. Технический результат - улучшение антикоррозионных показателей бурового раствора, его смазочных и противоизносных свойств применительно к паре трения «металл-горная порода». Реагент комплексного действия для буровых промывочных...
Тип: Изобретение
Номер охранного документа: 0002589782
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6cb3

Способ эксплуатации газового промысла при коллекторно-лучевой организации схемы сбора на завершающей стадии разработки месторождения

Изобретение относится к газодобывающей промышленности и может быть использовано при добыче газа на газовых и газоконденсатных месторождениях, использующих коллекторно-лучевую организацию схемы сбора, в период снижения добычи в условиях накопления жидкости в скважинах и шлейфах. Технический...
Тип: Изобретение
Номер охранного документа: 0002597390
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6cec

Способ очистки воды и устройство для его осуществления

Изобретение относится к способам очистки воды от растворенных органических веществ и может быть использовано для очистки природных и сточных вод. Способ включает предварительное полное газонасыщение обрабатываемой воды газами-окислителями и каталитическое окисление компонентов водного раствора...
Тип: Изобретение
Номер охранного документа: 0002597387
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d32

Охлаждающее устройство для термостабилизации грунтов оснований зданий и сооружений

Изобретение относится к строительству, а именно к устройствам, используемым при термомелиорации грунтов основания фундаментов сооружений, возводимых в районах распространения вечной и сезонной мерзлоты. Охлаждающее устройство для термостабилизации грунтов оснований зданий и сооружений содержит...
Тип: Изобретение
Номер охранного документа: 0002597394
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d70

Перфоратор щелевой для обсаженных скважин

Изобретение относится к нефтяной и газовой промышленности и предназначено для щелевой перфорации обсадной колонны, цементного камня и горной породы. Перфоратор щелевой для обсаженных скважин состоит из корпуса, подпружиненного полым штоком с поршнем, опорных роликов, гидромониторной насадки,...
Тип: Изобретение
Номер охранного документа: 0002597392
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8a5c

Способ контроля процесса обводнения газовых скважин

Изобретение относится к газодобывающей промышленности и может быть использовано при разработке и эксплуатации газовых месторождений. Техническим результатом является диагностирование начала обводнения газовых скважин в режиме реального времени и предотвращение их самозадавливания. Для контроля...
Тип: Изобретение
Номер охранного документа: 0002604101
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b8c

Способ определения коэффициентов трения системы "долото-забой" при бурении скважины

Изобретение относится к бурению скважин шарошечными долотами и может быть применено для совершенствования условий бурения. Техническим результатом является получение коэффициентов трения вращательного и поступательного движений долота при взаимодействии его вооружения с горной породой забоя,...
Тип: Изобретение
Номер охранного документа: 0002604099
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9e5d

Способ получения модифицированного феррохромлигносульфонатного реагента

Изобретение относится к области бурения нефтяных и газовых скважин, в частности к реагентам для химической обработки буровых растворов. Технический результат - получение феррохромлигносульфонатого реагента, обеспечивающего получение комплексных соединений с повышенным разжижающим эффектом и...
Тип: Изобретение
Номер охранного документа: 0002606005
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a95a

Способ переработки нефтесодержащих отходов (шламов)

Изобретение относится к способу переработки нефтесодержащих отходов (шламов) и может быть использовано в нефтяной, нефтеперерабатывающей и других отраслях народного хозяйства, на производственных объектах которых имеет место формирование, складирование и длительное хранение в земляных амбарах...
Тип: Изобретение
Номер охранного документа: 0002611870
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.bc83

Усовершенствованная система компаундирования разносортных нефтей

Изобретение относится к средствам автоматизации и может быть применено для перекачки нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируется к потребителю. Система содержит по крайней мере два нефтепровода, предназначенные для транспортировки потоков...
Тип: Изобретение
Номер охранного документа: 0002616194
Дата охранного документа: 13.04.2017
Showing 1-3 of 3 items.
17.02.2018
№218.016.2e61

Устройство для обеспечения проектного положения подземного трубопровода при прокладке в условиях многолетнемёрзлых грунтов

Изобретение относится к строительству и эксплуатации магистральных трубопроводов и используется при прокладке трубопровода на участках с многолетнемерзлыми грунтами. Устройство для обеспечения проектного положения подземного трубопровода при прокладке в условиях многолетнемерзлых грунтов...
Тип: Изобретение
Номер охранного документа: 0002643914
Дата охранного документа: 06.02.2018
29.05.2018
№218.016.569c

Способ прокладки подземного трубопровода в болотистой местности на болотах i типа

Изобретение относится к области строительства, эксплуатации и ремонта трубопроводов, транспортирующих газ, нефть и другие продукты и может быть использовано при прокладке подземного трубопровода в болотистой местности на болотах I типа. Способ заключается в разработке узкой траншеи специальной...
Тип: Изобретение
Номер охранного документа: 0002654557
Дата охранного документа: 21.05.2018
24.07.2020
№220.018.380d

Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного...
Тип: Изобретение
Номер охранного документа: 0002727732
Дата охранного документа: 23.07.2020
+ добавить свой РИД