×
03.09.2019
219.017.c684

Результат интеллектуальной деятельности: Энергоэффективное устройство лазерной резки материалов

Вид РИД

Изобретение

Аннотация: Энергоэффективное устройство лазерной резки материалов может быть использовано для оперативного и высокоточного изготовления сложноконтурных деталей из листовой заготовки. Сущность изобретения заключается в том, что устройство содержит источник питания, лазерный излучатель, оптические элементы, сопло, систему охлаждения лазерного излучателя, систему подачи технологического газа и систему передачи тепловой энергии от системы охлаждения лазерного излучателя к обрабатываемой заготовке. Часть тепловой энергии посредством системы передачи тепловой энергии поступает от системы охлаждения лазерного излучателя к обрабатываемой заготовке. Происходит нагрев заготовки и для ее резки требуется меньше энергии лазерного излучения, либо происходит увеличение скорости границы разрушения без увеличения мощности лазерного излучения. Как показывают расчеты, нагрев заготовки на 10 градусов ведет к снижению необходимой мощности лазерного излучения на 1%. Устройство позволяет максимально использовать электрическую энергию, питающую лазерный технологический комплекс. 4 ил.

Изобретение относится к машиностроению и может быть использовано для лазерной резки с целью оперативного и высокоточного изготовления сложноконтурных деталей из листовой заготовки.

Известно [1], что коэффициент полезного действия (КПД) современных лазеров не превышает 30% для газовых лазеров [2] и 5% для твердотельных. Большая часть энергии расходуется на нагрев активного элемента, системы оптической накачки, других элементов лазерного излучателя, и рассеивается в окружающее пространство в виде тепловой энергии. Также известно [3], что для металлов величина начальной температуры Тн обрабатываемой заготовки влияет на величину скорости границы разрушения vн и vп для резки непрерывным и периодическим лазерным излучением:

где q - плотность мощности лазерного излучения, ρ - плотность материала заготовки, с - удельная теплоемкость материала, Т0 - температура материала на границе разрушения в зоне обработки, α - коэффициент температуропроводности материала, vp - скорость резки, r - радиус пятна лазерного луча на поверхности заготовки, ΣL - суммарная теплота фазовых переходов металла и его оксидов, G - удельная теплота реакции горения.

Таким образом, если часть тепловой энергии, рассеиваемой в окружающее пространство, передать на нагрев обрабатываемой заготовки, то будет достигнута большая скорость обработки при неизменном уровне энергопотребления лазерного технологического комплекса.

Известен ряд технических решений, суть которых сводится к тому, что на поверхность листовой заготовки подают сфокусированное лазерное излучение и струю газа, заготовку перемещают в плоскости фокуса, нормально к оси оптической системы [3]. В этом случае реализуется процесс газолазерной резки, состоящий из двух этапов: прожига первичного отверстия в материале и формирования зоны реза за счет перемещения заготовки по заданному контуру.

Известен способ лазерной резки [4], в котором обрабатываемый лист располагают на пластине-трафарете и осуществляют вырезку детали по пазам трафарета сфокусированным лазерным лучом и струей технологического газа. Вырезку контура детали в стальной пластине-трафарете и в обрабатываемом листе осуществляют лазерным лучом поочередно, но по одной и той же управляющей программе, и при одинаковой ориентации контура в системе координат стола. Вырезку контура детали в пластине-трафарете производят в струе кислорода в режиме с развитым боковым горением. Параметры резки выбирают такими, чтобы ширина реза была равна диаметру струи кислорода.

В способе [5] фокус луча направляют внутрь материала на расстояние от поверхности в пределах 1/2…5/8 толщины. В качестве модового состава излучения используют комплексную моду. Мощность излучения поддерживается в пределах 500…700 Вт. Скорость движения луча находится в пределах 0,8…2,5 см/с. Это позволяет получить высокое качество реза на верхней и нижней поверхностях материала при минимальной зоне термического влияния.

Известно устройство [6], в котором над разрезаемой поверхностью располагают сопло с зазором, позволяющим разрезать неровные и шероховатые поверхности, и создают над резом область повышенного давления, вдувая в нее вспомогательный газ. Газ вдувают в область повышенного давления с составляющей скорости, направленной вдоль реза в сторону его фронта. В качестве вспомогательного газа используют воздух. Сопло для подачи вспомогательного газа имеет выходное сечение, выполненное вытянутым вдоль направления фронта реза. Выходное сечение сопла снабжено направляющими перегородками, расположенными под углом 45…60° к направлению фронта реза для получения составляющей скорости вспомогательного газа, направленной вдоль реза в сторону его фронта. Это позволяет лазерному лучу проходить впереди сопла, что упрощает конструкцию устройства. Кроме того, выходное сечение сопла может быть выполнено с длиной вдоль реза более 0,6 толщины обрабатываемого материала, а сопло можно располагать позади лазерного луча. За счет сдвигания области с тормозящим градиентом давления в нижней части реза за пределы 40 мм по глубине реза или полного его устранения по всей толщине разрезаемого материала повышается качество резания материалов толщиной более 40 мм.

Общим недостатком устройств и способов [4-6] является отсутствие мер, направленных на снижение энергопотребления в целом системы газолазерной резки.

Наиболее близким к заявляемому устройству является способ лазерной резки [7], в котором заготовку закрепляют и растягивают, создавая растягивающие напряжения, определяемые соотношением σpχ≤σyGV, где σр -растягивающие напряжения, создаваемые в заготовке, МПа, χ - температуропроводность материала заготовки, мм2/с, σу - предел упругости материала заготовки, МПа, G - среднестатистический предел величины изгиба заготовки, мм, V - скорость резки, мм/с. На листовую заготовку через сопло резака подают сфокусированное лазерное излучение с заданным фокусным расстоянием и поток газа и перемещают ее под лучом по заданному контуру. Устройство [7] содержит источник лазерного излучения, зеркало, резак, платформу с зажимами для заготовки. Платформа установлена на координатном столе и содержит резьбовые направляющие для растяжения заготовки, которые представляют собой винтовые пары с лево- и правосторонней резьбой. Координатный стол управляется системой ЧПУ, связанной с источником лазерного излучения и с информационно-вычислительной системой через программный модуль, корректирующий контур реза пропорционально создаваемым в материале деформациям. Техническим результатом от использования изобретения является повышение точности лазерной резки за счет обеспечения по всей поверхности листовой заготовки стабильного положения плоскости фокусировки линзы резака в процессе резки и обеспечения практически постоянной величины зазора между соплом резака и поверхностью заготовки.

Недостатком перечисленных устройств является отсутствие мер, направленных на более полное использование энергопотребления системы газолазерной резки в целом.

Задачей настоящего изобретения является разработка устройства, позволяющего более полно использовать электрическую энергию, питающую лазерный технологический комплекс.

Сущность изобретения заключается в том, что устройство позволяет передавать тепловую энергию от системы охлаждения лазерного излучателя к обрабатываемой заготовке.

Принципиальная схема энергоэффективного устройства для лазерной резки материалов показана на фиг.1, где обозначено: 1 - источник электропитания; 2 - лазерный излучатель; оптические элементы, образующие систему формирования лазерного луча, 4 - сопло для подачи газа; 5 - обрабатываемая заготовка; 6 - система охлаждения лазерного излучателя; 7 -система подачи технологического газа; 8 - устройство передачи тепловой энергии от системы охлаждения лазерного излучателя к обрабатываемой заготовке.

В настоящее время для охлаждения лазерного излучателя используются, в основном, жидкостной или воздушный способы охлаждения.

Поэтому устройство передачи тепловой энергии от системы охлаждения лазерного излучателя к обрабатываемой заготовке может быть основано на теплопроводности или конвекции.

В случае использования воздушного охлаждения (фиг. 2) лазерного излучателя устройство передачи тепловой энергии работает по принципу конвекции. Воздушный поток, пройдя систему охлаждения лазерного излучателя 6, с использованием устройств для подачи воздуха (например, вентиляторов 9) по гибкому воздуховоду 10 направляется на обрабатываемую заготовку 5. При этом для более эффективного нагрева необходимо обеспечить теплоизоляцию обрабатываемой заготовки от координатного столика, например, при помощи теплоизолирующей прокладки 11.

В случае использования для охлаждения лазерного излучателя жидкостного теплоносителя устройство передачи тепловой энергии представляет собой теплообменник и конструктивно может быть выполнено, например, в виде трубчатой спирали, вмонтированной в координатный столик, на котором крепится обрабатываемая заготовка 5 с обеспечением теплового контакта. Устройство передачи тепловой энергии работает следующим образом (фиг. 3). Теплоноситель (или его часть) из контура 12 системы охлаждения лазерного излучателя 6 подается в теплообменник 13. При этом происходит нагрев координатного столика и, соответственно, увеличение начальной температуры обрабатываемой заготовки.

В результате увеличения начальной температуры обрабатываемой заготовки для ее резки потребуются либо меньше энергии лазерного излучения при заданной скорости резки, либо может быть увеличена скорость резки без увеличения энергии лазерного излучения. Как показывают расчеты, увеличение начальной температуры заготовки на 10 градусов ведет к снижению необходимой мощности лазерного излучения на 1%.

На фиг. 4 представлены результаты расчета скорости границы разрушения в зависимости от скорости резки при фиксированной мощности лазерного излучения. На фиг. 5 представлены результаты расчета скорости границы разрушения в зависимости от мощности лазерного излучения при фиксированной скорости резки. На фиг. 6 представлены результаты расчета для максимальной толщины разрезаемого материала в зависимости от мощности лазерного излучения при фиксированной скорости резки. Расчеты выполнялись для двух случаев: начальная температура материала 300 К и 360 К.

Литература

1. Справочник по лазерам/ Под ред. A.M. Прохорова. В 2-х томах. Т. I. - М.: Сов. радио, 1978. - с. 247.

2. Газовые лазеры/ Сб. статей. Пер. с англ. Под ред. Н.Н. Соболева. М.: Мир, 1968. - с. 6.

3. Малоотходные процессы резки лучом лазера / В.С. Коваленко, В. В. Романенко, Л. М. Олещук. - К.: Техника, 1987. - 112 с.

4. RU №2225782, 2004 г.

5. RU №2219029, 2003 г.

6. RU №2172233, 2001 г.

7. RU №2288084, 2006 г.

Энергоэффективное устройство лазерной резки материалов, содержащее источник питания, лазерный излучатель, оптические элементы, образующие систему формирования лазерного пучка, сопло, систему охлаждения лазерного излучателя, систему подачи технологического газа, отличающееся тем, что дополнительно введена система передачи тепловой энергии от системы охлаждения лазерного излучателя к обрабатываемой заготовке.
Энергоэффективное устройство лазерной резки материалов
Энергоэффективное устройство лазерной резки материалов
Энергоэффективное устройство лазерной резки материалов
Источник поступления информации: Роспатент

Showing 61-70 of 97 items.
15.11.2019
№219.017.e2c1

Удлиненный кумулятивный заряд и способ его изготовления

Изобретение относится в области взрывного дела, в частности к зарядам для взрывных работ и может быть использовано при демонтаже крупногабаритных инженерных сооружений, конструкций, а также при ликвидации с утилизацией тяжелой военной техники и вооружений. Устройство относится к составным...
Тип: Изобретение
Номер охранного документа: 0002706155
Дата охранного документа: 14.11.2019
10.12.2019
№219.017.ebbe

Способ управления беспилотным планирующим летательным аппаратом на траекториях с изменениями направлений движения в заданных опорных точках

Изобретение относится к способу управления беспилотным планирующим летательным аппаратом (БПЛА). Для управления БПЛА формулируют и решают в каждом цикле наведения краевую задачу наведения БПЛА на каждую опорную точку траектории в сопровождающей системе координат с началом на текущем...
Тип: Изобретение
Номер охранного документа: 0002708412
Дата охранного документа: 06.12.2019
27.12.2019
№219.017.f31f

Устройство для моделирования каталога разведки подвижных объектов

Изобретение относится к области вычислительной техники. Технический результат заключается в снижении вероятности возникновения аддитивной или мультипликативной погрешности при считывании гармонического сигнала. Технический результат достигается за счет устройства для моделирования каталога...
Тип: Изобретение
Номер охранного документа: 0002710300
Дата охранного документа: 25.12.2019
22.01.2020
№220.017.f821

Способ противодействия телевизионной разведке

Способ относится к области военного дела, а именно к маскировке военных объектов и противодействию телевизионной разведке, путем скрытия объекта разведки изображением подстилающей поверхности или ложного объекта. Способ противодействия телевизионной разведке, заключающийся в том, что применяют...
Тип: Изобретение
Номер охранного документа: 0002711538
Дата охранного документа: 17.01.2020
01.02.2020
№220.017.fc80

Система обнаружения воздушных и наземных целей

Изобретение относится к летательным аппаратам, предназначенным для непрерывного наблюдения с воздуха за отдельными участками местности и воздушного пространства, при решении природоохранных, пожароохранных и военных задач. Система содержит корпус, заполненный несущим газом легче воздуха. На...
Тип: Изобретение
Номер охранного документа: 0002712468
Дата охранного документа: 29.01.2020
15.02.2020
№220.018.02e5

Способ расснаряжения боеприпасов

Изобретение относится к области утилизации вооружения и военной техники, а именно к способам расснаряжения боеприпасов. Способ расснаряжения боеприпасов, заключающийся в выжигании заряда взрывчатого вещества из вертикально установленной горловиной вниз металлической оболочки боеприпаса путем...
Тип: Изобретение
Номер охранного документа: 0002714165
Дата охранного документа: 12.02.2020
23.02.2020
№220.018.0547

Крепление клевант к свободным концам парашютной системы при помощи магнитов

Изобретение относится к области парашютной техники. Крепление клевант к свободным концам парашютной системы при помощи магнитов содержит термоусаживаемую ленту, неодиновые магниты, клеванты, свободные концы, стропы управления, направляющие кольца, кольцевое замковое устройство и софт-линки для...
Тип: Изобретение
Номер охранного документа: 0002714988
Дата охранного документа: 21.02.2020
28.02.2020
№220.018.06c6

Способ и устройство обработки оптической информации

Изобретение относится к способу и устройству обработки оптической информации. Техническим результатом является повышение точности при обработке информации. Способ обработки оптической информации заключается в том, что вводят данные изображения датчиком изображения, включающим в себя часть...
Тип: Изобретение
Номер охранного документа: 0002715292
Дата охранного документа: 26.02.2020
01.04.2020
№220.018.121b

Способ метрологического обслуживания средств измерений в местах их эксплуатации

Изобретение относится к методам и средствам проведения метрологической аттестации проверяемых средств измерений, эталонов одинакового или более высокого порядка. Способ метрологического обслуживания средств измерений в местах их эксплуатации формируется за счет применения измерительной системы,...
Тип: Изобретение
Номер охранного документа: 0002718147
Дата охранного документа: 30.03.2020
01.04.2020
№220.018.125a

Ракетная двигательная установка с устройством диспергирования твёрдого топлива

Изобретение относится к ракетно-космической технике, в частности к ракетным двигателям. Ракетная двигательная установка с устройством диспергирования твердого топлива включает корпус, заполненный твердым топливом, сопловой блок с камерой сгорания, а также поршень, турбины и газовый редуктор....
Тип: Изобретение
Номер охранного документа: 0002718106
Дата охранного документа: 30.03.2020
Showing 1-9 of 9 items.
27.06.2013
№216.012.522b

Способ обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов. Способ обработки неметаллических материалов согласно изобретению заключается в облучении поверхности материала импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002486628
Дата охранного документа: 27.06.2013
20.03.2015
№216.013.3219

Портативный автономный многоразовый импульсный твердотельный лазер

Портативный автономный многоразовый импульсный твердотельный лазер выполнен в виде двух состыкованных сборок и внешнего резонатора. Одна из сборок - разрушаемая (сменная), включает в себя ударную трубку, заполненную ксеноном, заряд взрывчатого вещества, разрушаемый отражатель и светопроводящую...
Тип: Изобретение
Номер охранного документа: 0002544300
Дата охранного документа: 20.03.2015
10.08.2015
№216.013.6ba8

Способ определения параметров динамического деформирования металлических материалов и устройство для его реализации

Использование: для определения параметров высокоскоростного движения метательных тел, например измерения перегрузок, скорости соударения, и для исследования параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002559118
Дата охранного документа: 10.08.2015
10.02.2016
№216.014.c227

Способ лазерной обработки неметаллических материалов

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный...
Тип: Изобретение
Номер охранного документа: 0002574327
Дата охранного документа: 10.02.2016
10.08.2016
№216.015.5401

Инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Инфракрасный твердотельный лазер содержит лазер накачки, кристалл Fe:ZnSe - пассивный модулятор добротности и дополнительный резонатор. Резонатор лазера накачки выполнен «глухим», а пассивный модулятор добротности имеет вид кристалла Fe:ZnSe,...
Тип: Изобретение
Номер охранного документа: 0002593819
Дата охранного документа: 10.08.2016
29.12.2017
№217.015.fdb3

Малогабаритный инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее...
Тип: Изобретение
Номер охранного документа: 0002638078
Дата охранного документа: 11.12.2017
10.04.2019
№219.017.0250

Следящая система наведения

Изобретение относится к системам автоматического управления, а именно к следящим системам наведения объектов с ограниченным углом поворота, и может быть использовано в системах наведения мобильных робототехнических комплексов, самоходных артиллерийских установок, пусковых установок ракетных и...
Тип: Изобретение
Номер охранного документа: 0002347172
Дата охранного документа: 20.02.2009
23.07.2019
№219.017.b715

Способ определения параметров динамического деформирования металлических материалов

Изобретение относится к измерительной технике и может быть использовано для исследований параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность: регистрируют электромагнитное поле, возникающее при динамическом деформировании тел, например...
Тип: Изобретение
Номер охранного документа: 0002695024
Дата охранного документа: 18.07.2019
23.08.2019
№219.017.c32b

Способ определения мощности ядерного взрыва

Изобретение относится к области построения и функционирования измерительных информационных систем обнаружения и засечки ядерных взрывов. Способ определения мощности ядерного взрыва содержит этапы, на которых одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего...
Тип: Изобретение
Номер охранного документа: 0002698075
Дата охранного документа: 21.08.2019
+ добавить свой РИД