×
24.08.2019
219.017.c391

Результат интеллектуальной деятельности: СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002698148
Дата охранного документа
22.08.2019
Аннотация: Изобретение относится к области теплоэнергетики и предназначено для применения в системах жидкостного охлаждения при помощи холодильных машин - чиллеров (далее - чиллерных системах) с замкнутым контуром, от которых требуется высокая надежность и бесперебойная работа, в том числе в чиллерных системах, изначально не предназначенных для бесперебойного охлаждения. Технической проблемой изобретения является создание простого, надежного, с малыми массогабаритными показателями способа бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения при прогнозируемых перебоях электропитания, отказе, остановке чиллера или циркуляционного насоса, в том числе в уже существующих чиллерных системах, изначально не предназначенных для бесперебойного охлаждения, без изменения заводской конструкции таких систем. Для способа обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения выявлены основные общие с прототипом существенные признаки, такие как: чиллер, расширительный бак, гидроаккумулятор, насосная группа, состоящая по меньшей мере из двух циркуляционных насосов, охлаждаемое оборудование и соединяющие их трубопроводы, в которых по замкнутому контуру циркулирует теплоноситель. Поставленная техническая проблема решается благодаря тому, что по замкнутому контуру поддерживают циркуляцию теплоносителя по меньшей мере двумя циркуляционными насосами, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают. Согласно заявляемому изобретению управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения. При решении задачи указанным способом не происходит разделения контура охлаждения на основную и дополнительную части, как в прототипе, при помощи дополнительных гидравлических элементов, например, переключающих, отсечных клапанов и необходимого для их работы управляющего оборудования. Техническим результатом изобретения является использование общей массы циркулирующего в системе теплоносителя в последовательно соединенных гидравлических элементах вместо параллельного подключения буферной емкости, что, в свою очередь, позволило обойтись без дополнительного оборудования, например, переключающих или отсечных клапанов и необходимого для их работы управляющего оборудования. 2 ил.

Изобретение относится к области теплоэнергетики и предназначено для применения в системах жидкостного охлаждения при помощи холодильных машин - чиллеров (далее - чиллерных системах) с замкнутым контуром, от которых требуется высокая надежность и бесперебойная работа, в том числе в чиллерных системах, изначально не предназначенных для бесперебойного охлаждения.

Основными компонентами указанных чиллерных систем, как правило, являются охлаждаемое оборудование, чиллер, насосная группа, состоящая, по меньшей мере, из двух циркуляционных насосов, работающих попеременно и управляемых от программируемого контроллера чиллера в режиме резервирования, расширительный бак, гидроаккумулятор и трубопроводы, соединяющие перечисленные компоненты в единый замкнутый контур охлаждения, по которому циркулирует теплоноситель.

Общеизвестен способ, когда для защиты перебоев в электропитании чиллер и циркуляционные насосы подключают через источник бесперебойного электропитания (ИБП), где электрическая энергия запасается в аккумуляторах, или используют альтернативный источник энергии, в частности, по принципу, описанному в заявке на патент US 2007/0132317. Расчетное время работы системы при отключении электропитания определяется параметрами ИБП.

Главным недостатком описанного способа является необходимость применения дорогостоящего специализированного ИБП большой мощности со значительными габаритами и массой, поскольку электродвигатель компрессора чиллера имеет высокое энергопотребление и значительный пусковой ток. Кроме этого, описанный способ не обеспечивает бесперебойное охлаждение в случае выхода из строя или остановки чиллера.

Известен свободный от указанных недостатков способ (Патент RU 2592883 С2), когда для выполнения указанного результата в замкнутый жидкостный контур встраивают резервное устройство охлаждения, которое включает в себя компактный резервуар охлаждения, включающий в себя множество автономных аккумуляторов холода небольшого размера, вспомогательный блок охлаждения выполнен с возможностью охлаждения множества аккумуляторов холода небольшого размера во время фазы подзарядки, клапан, выполненный с возможностью выборочного соединения резервуара охлаждения с основным устройством охлаждения во время фазы отдачи таким образом, чтобы множество аккумуляторов холода небольшого размера обеспечивало теплоотвод для охлаждения охлаждающей жидкости для основного устройства охлаждения. При этом охлаждение оборудования в аварийном режиме происходит за счет холода, запасенного в аккумуляторах холода, а для бесперебойного охлаждения требуется ИБП малой мощности.

Недостатком данного способа является высокая сложность конструкции, выражающаяся в большом количестве дополнительных элементов, сложном алгоритме работы, необходимости управления при помощи программируемого контроллера, что повышает вероятность отказа и общую стоимость системы.

В качестве ближайшего аналога выбран способ (Патент US 6,334,331 В1), состоящий в том, что управляемыми отсечными клапанами разделяют контур охлаждения на основную часть и дополнительную часть, относящуюся к охлаждаемому оборудованию; параллельно дополнительной части контура подключают буферную емкость с запасом теплоносителя, встраивают в дополнительную часть контура дополнительные циркуляционные насосы, которые запитывают от ИБП, а чиллер от ИБП не запитывают.

При прогнозируемых перебоях электропитания или остановке чиллера часть контура, относящаяся к охлаждаемому оборудованию, отделяется отсечными клапанами от основного контура, после чего циркуляция при помощи дополнительных циркуляционных насосов происходит через буферную емкость, а оборудование охлаждается за счет тепловой инерции теплоносителя, находящегося в трубопроводах дополнительной части контура и буферной емкости. Расчетное время бесперебойного охлаждения в этом случае зависит от общей массы теплоносителя и без учета тепловых потерь может быть примерно определено по формуле:

где t - расчетное время, мин;

m - общая масса теплоносителя в контуре, кг;

с - удельная теплоемкость теплоносителя, для воды равная 4200

Т1 - исходная температура теплоносителя, К;

Т2 - предельно допустимая температура теплоносителя, К;

Р - мощность тепловыделения охлаждаемого оборудования, Вт.

Поскольку энергопотребление циркуляционных насосов значительно ниже энергопотребления чиллера, для их питания применяют ИБП малой мощности.

Этот способ принят за прототип изобретения.

Недостатками описанного способа являются: подключение буферной емкости параллельно дополнительной части контура охлаждения, что в штатном режиме снижает проток через охлаждаемое оборудование; дополнительные массогабаритные показатели из-за буферной емкости; необходимость управления отсечными клапанами и дополнительными циркуляционными насосами при помощи программируемого контроллера или действий оператора, что увеличивает вероятность отказа.

Технической проблемой изобретения является создание простого, надежного, с малыми массогабаритными показателями способа бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения при прогнозируемых перебоях электропитания, отказе, остановке чиллера или циркуляционного насоса; в том числе в уже существующих чиллерных системах, изначально не предназначенных для бесперебойного охлаждения, без изменения заводской конструкции таких систем.

Для способа обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения выявлены основные общие с прототипом существенные признаки, такие как: чиллер, расширительный бак, гидроаккумулятор, насосная группа, состоящая, по меньшей мере, из двух циркуляционных насосов, охлаждаемое оборудование и соединяющие их трубопроводы, в которых по замкнутому контуру циркулирует теплоноситель.

Поставленная техническая проблема решается благодаря тому, что по замкнутому контуру поддерживают циркуляцию теплоносителя насосной группой, состоящей из, по меньшей мере, двух циркуляционных насосов, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают. Согласно заявляемому изобретению управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения.

При решении задачи указанным способом не происходит разделения контура охлаждения на основную и дополнительную части, как в прототипе, при помощи дополнительных гидравлических элементов, например, переключающих, отсечных клапанов и необходимого для их работы управляющего оборудования.

Из формулы (1) следует, что общей массы теплоносителя в замкнутом контуре системы должно быть достаточно для обеспечения расчетного времени бесперебойного охлаждения, необходимого для устранения неисправности или безопасной остановки охлаждаемого оборудования. Если это условие не выполняется, общая масса теплоносителя может быть увеличена до необходимой путем встраивания в контур дополнительной буферной емкости.

Принцип работы представлен на гидравлической (Фиг. 1) и электрической (Фиг. 2) схемах:

Чиллерная система жидкостного охлаждения содержит следующие гидравлические элементы: чиллер 1; расширительный бак 2; гидроаккумулятор 3; насосную группу 4, состоящую, по меньшей мере, из двух циркуляционных насосов; охлаждаемое оборудование 5, соединяющие их в замкнутый контур трубопроводы 6 и, при необходимости, - дополнительную емкость 7, в которых циркулирует теплоноситель. В разрыв электрических цепей управляющих сигналов от чиллера 1 к циркуляционным насосам встроен управляющий модуль 8. Насосная группа 4 и модуль 8 запитаны от источника бесперебойного питания малой мощности 9, а чиллер 1 от источника бесперебойного электропитания 9 не запитан. Модуль 8 представляет из себя простейшее электронное устройство, обладающее в связи с этим высокой надежностью, и работает в двух режимах: штатном и бесперебойного охлаждения

Работа осуществляется следующим образом: В штатном режиме работы модуль 8 не участвует в работе системы и передает без изменений управляющие сигналы от контроллера чиллера 1 к циркуляционным насосам. В случае прогнозируемой остановки чиллера 1 по причинам неисправности, возникновения внутренней ошибки или перебоев в электропитании, общим признаком которых является исчезновение управляющих сигналов от контроллера чиллера 1, модуль 8 автоматически переходит в режим бесперебойного охлаждения и имитирует управляющие сигналы контроллера чиллера 1, самостоятельно выполняя, таким образом, управление циркуляционными насосами. Охлаждение оборудования происходит за счет тепловой инерции общей массы теплоносителя, находящегося в гидроаккумуляторе 3, расширительном баке 2, трубопроводах 6 и других гидравлических элементах чиллерной системы.

В случае неисправности работающего циркуляционного насоса модуль 8 самостоятельно определяет неисправность, используя установленный в потоке теплоносителя дополнительный или штатный датчик 10, например, реле протока, и включает другой циркуляционный насос. Возврат модуля 8 в штатный режим также происходит автоматически при появлении управляющих сигналов.

Техническим результатом изобретения является использование общей массы циркулирующего в системе теплоносителя в последовательно соединенных гидравлических элементах вместо параллельного подключения буферной емкости, что, в свою очередь, позволило обойтись без дополнительного оборудования, например, переключающих или отсечных клапанов и необходимого для их работы управляющего оборудования.

Способ обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения, заключающийся в том, что по замкнутому контуру поддерживают циркуляцию теплоносителя по меньшей мере двумя циркуляционными насосами, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают, отличающийся тем, что управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения.
СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ
СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 193 items.
27.08.2015
№216.013.7588

Устройство телеметрического контроля контактных датчиков механических устройств батареи солнечной

Изобретение относится к системам контроля работы механических узлов солнечной батареи (СБ) космического аппарата (КА) в условиях эксплуатации. Устройство содержит цепочку из N (напр., N=5) последовательно соединенных контактных датчиков (КД) (2,…, 2), к которым параллельно подключены резисторы...
Тип: Изобретение
Номер охранного документа: 0002561663
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.789e

Механический рычажный замок (варианты)

Изобретение относится к космической технике и может быть использовано для соединения и разъединения частей космического аппарата. Механический рычажный замок содержит кронштейн, закрепленный на первом отделяемом элементе, коромысло с возможностью поворота на оси и зафиксированное по...
Тип: Изобретение
Номер охранного документа: 0002562467
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79b8

Интерфейсный модуль контроля температур

Изобретение относится к области измерительной техники и может найти применение в многоканальных устройствах для измерения температур с помощью термопреобразователей сопротивления. Интерфейсный модуль контроля температур содержит термопреобразователь сопротивления 1, опорный резистор 2 и...
Тип: Изобретение
Номер охранного документа: 0002562749
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a77

Способ цифрового измерения временных интервалов

Изобретение относится к измерительной технике и может быть использовано при различных физических исследованиях. Способ основан на формировании внутри измерительного временного интервала, равного целому числу периодов исследуемого сигнала, вспомогательных временных интервалов, которые заполняют...
Тип: Изобретение
Номер охранного документа: 0002562940
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7b71

Способ изготовления рефлектора

Изобретение относится к радиотехнике и предназначено для изготовления прецизионных рефлекторов из полимерных композиционных материалов для антенн космических аппаратов. Технический результат - повышение радиотехнических свойств и точности рабочей поверхности рефлектора. Для этого рефлектор...
Тип: Изобретение
Номер охранного документа: 0002563198
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e48

Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а...
Тип: Изобретение
Номер охранного документа: 0002563925
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8137

Устройство металлизации подвижных элементов конструкции

Изобретение относится к устройству металлизации подвижных элементов конструкции трансформируемых механических систем космических летательных аппаратов и предназначено для защиты приборов и кабельных систем трансформируемых механических систем космических летательных аппаратов от влияния зарядов...
Тип: Изобретение
Номер охранного документа: 0002564676
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.830a

Способ тепловакуумных испытаний космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации....
Тип: Изобретение
Номер охранного документа: 0002565149
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8420

Кронштейн

Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например...
Тип: Изобретение
Номер охранного документа: 0002565427
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84ea

Способ изготовления космического аппарата

Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом....
Тип: Изобретение
Номер охранного документа: 0002565629
Дата охранного документа: 20.10.2015
+ добавить свой РИД