×
24.08.2019
219.017.c391

Результат интеллектуальной деятельности: СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002698148
Дата охранного документа
22.08.2019
Аннотация: Изобретение относится к области теплоэнергетики и предназначено для применения в системах жидкостного охлаждения при помощи холодильных машин - чиллеров (далее - чиллерных системах) с замкнутым контуром, от которых требуется высокая надежность и бесперебойная работа, в том числе в чиллерных системах, изначально не предназначенных для бесперебойного охлаждения. Технической проблемой изобретения является создание простого, надежного, с малыми массогабаритными показателями способа бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения при прогнозируемых перебоях электропитания, отказе, остановке чиллера или циркуляционного насоса, в том числе в уже существующих чиллерных системах, изначально не предназначенных для бесперебойного охлаждения, без изменения заводской конструкции таких систем. Для способа обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения выявлены основные общие с прототипом существенные признаки, такие как: чиллер, расширительный бак, гидроаккумулятор, насосная группа, состоящая по меньшей мере из двух циркуляционных насосов, охлаждаемое оборудование и соединяющие их трубопроводы, в которых по замкнутому контуру циркулирует теплоноситель. Поставленная техническая проблема решается благодаря тому, что по замкнутому контуру поддерживают циркуляцию теплоносителя по меньшей мере двумя циркуляционными насосами, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают. Согласно заявляемому изобретению управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения. При решении задачи указанным способом не происходит разделения контура охлаждения на основную и дополнительную части, как в прототипе, при помощи дополнительных гидравлических элементов, например, переключающих, отсечных клапанов и необходимого для их работы управляющего оборудования. Техническим результатом изобретения является использование общей массы циркулирующего в системе теплоносителя в последовательно соединенных гидравлических элементах вместо параллельного подключения буферной емкости, что, в свою очередь, позволило обойтись без дополнительного оборудования, например, переключающих или отсечных клапанов и необходимого для их работы управляющего оборудования. 2 ил.

Изобретение относится к области теплоэнергетики и предназначено для применения в системах жидкостного охлаждения при помощи холодильных машин - чиллеров (далее - чиллерных системах) с замкнутым контуром, от которых требуется высокая надежность и бесперебойная работа, в том числе в чиллерных системах, изначально не предназначенных для бесперебойного охлаждения.

Основными компонентами указанных чиллерных систем, как правило, являются охлаждаемое оборудование, чиллер, насосная группа, состоящая, по меньшей мере, из двух циркуляционных насосов, работающих попеременно и управляемых от программируемого контроллера чиллера в режиме резервирования, расширительный бак, гидроаккумулятор и трубопроводы, соединяющие перечисленные компоненты в единый замкнутый контур охлаждения, по которому циркулирует теплоноситель.

Общеизвестен способ, когда для защиты перебоев в электропитании чиллер и циркуляционные насосы подключают через источник бесперебойного электропитания (ИБП), где электрическая энергия запасается в аккумуляторах, или используют альтернативный источник энергии, в частности, по принципу, описанному в заявке на патент US 2007/0132317. Расчетное время работы системы при отключении электропитания определяется параметрами ИБП.

Главным недостатком описанного способа является необходимость применения дорогостоящего специализированного ИБП большой мощности со значительными габаритами и массой, поскольку электродвигатель компрессора чиллера имеет высокое энергопотребление и значительный пусковой ток. Кроме этого, описанный способ не обеспечивает бесперебойное охлаждение в случае выхода из строя или остановки чиллера.

Известен свободный от указанных недостатков способ (Патент RU 2592883 С2), когда для выполнения указанного результата в замкнутый жидкостный контур встраивают резервное устройство охлаждения, которое включает в себя компактный резервуар охлаждения, включающий в себя множество автономных аккумуляторов холода небольшого размера, вспомогательный блок охлаждения выполнен с возможностью охлаждения множества аккумуляторов холода небольшого размера во время фазы подзарядки, клапан, выполненный с возможностью выборочного соединения резервуара охлаждения с основным устройством охлаждения во время фазы отдачи таким образом, чтобы множество аккумуляторов холода небольшого размера обеспечивало теплоотвод для охлаждения охлаждающей жидкости для основного устройства охлаждения. При этом охлаждение оборудования в аварийном режиме происходит за счет холода, запасенного в аккумуляторах холода, а для бесперебойного охлаждения требуется ИБП малой мощности.

Недостатком данного способа является высокая сложность конструкции, выражающаяся в большом количестве дополнительных элементов, сложном алгоритме работы, необходимости управления при помощи программируемого контроллера, что повышает вероятность отказа и общую стоимость системы.

В качестве ближайшего аналога выбран способ (Патент US 6,334,331 В1), состоящий в том, что управляемыми отсечными клапанами разделяют контур охлаждения на основную часть и дополнительную часть, относящуюся к охлаждаемому оборудованию; параллельно дополнительной части контура подключают буферную емкость с запасом теплоносителя, встраивают в дополнительную часть контура дополнительные циркуляционные насосы, которые запитывают от ИБП, а чиллер от ИБП не запитывают.

При прогнозируемых перебоях электропитания или остановке чиллера часть контура, относящаяся к охлаждаемому оборудованию, отделяется отсечными клапанами от основного контура, после чего циркуляция при помощи дополнительных циркуляционных насосов происходит через буферную емкость, а оборудование охлаждается за счет тепловой инерции теплоносителя, находящегося в трубопроводах дополнительной части контура и буферной емкости. Расчетное время бесперебойного охлаждения в этом случае зависит от общей массы теплоносителя и без учета тепловых потерь может быть примерно определено по формуле:

где t - расчетное время, мин;

m - общая масса теплоносителя в контуре, кг;

с - удельная теплоемкость теплоносителя, для воды равная 4200

Т1 - исходная температура теплоносителя, К;

Т2 - предельно допустимая температура теплоносителя, К;

Р - мощность тепловыделения охлаждаемого оборудования, Вт.

Поскольку энергопотребление циркуляционных насосов значительно ниже энергопотребления чиллера, для их питания применяют ИБП малой мощности.

Этот способ принят за прототип изобретения.

Недостатками описанного способа являются: подключение буферной емкости параллельно дополнительной части контура охлаждения, что в штатном режиме снижает проток через охлаждаемое оборудование; дополнительные массогабаритные показатели из-за буферной емкости; необходимость управления отсечными клапанами и дополнительными циркуляционными насосами при помощи программируемого контроллера или действий оператора, что увеличивает вероятность отказа.

Технической проблемой изобретения является создание простого, надежного, с малыми массогабаритными показателями способа бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения при прогнозируемых перебоях электропитания, отказе, остановке чиллера или циркуляционного насоса; в том числе в уже существующих чиллерных системах, изначально не предназначенных для бесперебойного охлаждения, без изменения заводской конструкции таких систем.

Для способа обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения выявлены основные общие с прототипом существенные признаки, такие как: чиллер, расширительный бак, гидроаккумулятор, насосная группа, состоящая, по меньшей мере, из двух циркуляционных насосов, охлаждаемое оборудование и соединяющие их трубопроводы, в которых по замкнутому контуру циркулирует теплоноситель.

Поставленная техническая проблема решается благодаря тому, что по замкнутому контуру поддерживают циркуляцию теплоносителя насосной группой, состоящей из, по меньшей мере, двух циркуляционных насосов, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают. Согласно заявляемому изобретению управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения.

При решении задачи указанным способом не происходит разделения контура охлаждения на основную и дополнительную части, как в прототипе, при помощи дополнительных гидравлических элементов, например, переключающих, отсечных клапанов и необходимого для их работы управляющего оборудования.

Из формулы (1) следует, что общей массы теплоносителя в замкнутом контуре системы должно быть достаточно для обеспечения расчетного времени бесперебойного охлаждения, необходимого для устранения неисправности или безопасной остановки охлаждаемого оборудования. Если это условие не выполняется, общая масса теплоносителя может быть увеличена до необходимой путем встраивания в контур дополнительной буферной емкости.

Принцип работы представлен на гидравлической (Фиг. 1) и электрической (Фиг. 2) схемах:

Чиллерная система жидкостного охлаждения содержит следующие гидравлические элементы: чиллер 1; расширительный бак 2; гидроаккумулятор 3; насосную группу 4, состоящую, по меньшей мере, из двух циркуляционных насосов; охлаждаемое оборудование 5, соединяющие их в замкнутый контур трубопроводы 6 и, при необходимости, - дополнительную емкость 7, в которых циркулирует теплоноситель. В разрыв электрических цепей управляющих сигналов от чиллера 1 к циркуляционным насосам встроен управляющий модуль 8. Насосная группа 4 и модуль 8 запитаны от источника бесперебойного питания малой мощности 9, а чиллер 1 от источника бесперебойного электропитания 9 не запитан. Модуль 8 представляет из себя простейшее электронное устройство, обладающее в связи с этим высокой надежностью, и работает в двух режимах: штатном и бесперебойного охлаждения

Работа осуществляется следующим образом: В штатном режиме работы модуль 8 не участвует в работе системы и передает без изменений управляющие сигналы от контроллера чиллера 1 к циркуляционным насосам. В случае прогнозируемой остановки чиллера 1 по причинам неисправности, возникновения внутренней ошибки или перебоев в электропитании, общим признаком которых является исчезновение управляющих сигналов от контроллера чиллера 1, модуль 8 автоматически переходит в режим бесперебойного охлаждения и имитирует управляющие сигналы контроллера чиллера 1, самостоятельно выполняя, таким образом, управление циркуляционными насосами. Охлаждение оборудования происходит за счет тепловой инерции общей массы теплоносителя, находящегося в гидроаккумуляторе 3, расширительном баке 2, трубопроводах 6 и других гидравлических элементах чиллерной системы.

В случае неисправности работающего циркуляционного насоса модуль 8 самостоятельно определяет неисправность, используя установленный в потоке теплоносителя дополнительный или штатный датчик 10, например, реле протока, и включает другой циркуляционный насос. Возврат модуля 8 в штатный режим также происходит автоматически при появлении управляющих сигналов.

Техническим результатом изобретения является использование общей массы циркулирующего в системе теплоносителя в последовательно соединенных гидравлических элементах вместо параллельного подключения буферной емкости, что, в свою очередь, позволило обойтись без дополнительного оборудования, например, переключающих или отсечных клапанов и необходимого для их работы управляющего оборудования.

Способ обеспечения бесперебойного охлаждения в чиллерных системах с замкнутым контуром жидкостного охлаждения, заключающийся в том, что по замкнутому контуру поддерживают циркуляцию теплоносителя по меньшей мере двумя циркуляционными насосами, охлаждение оборудования в случае прогнозируемых перебоев в работе системы в течение заданного времени производят за счет тепловой инерции общей массы циркулирующего в системе теплоносителя, которую подают из буферной емкости без охлаждения чиллером, при этом циркуляционные насосы запитывают от источника бесперебойного электропитания, а чиллер от источника бесперебойного электропитания не запитывают, отличающийся тем, что управляют циркуляционными насосами встроенным в электрические цепи управляющим модулем, который запитывают от источника бесперебойного электропитания, а в качестве буферной емкости используют все последовательно соединенные гидравлические элементы замкнутого контура жидкостного охлаждения.
СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ
СПОСОБ ОБЕСПЕЧЕНИЯ БЕСПЕРЕБОЙНОГО ОХЛАЖДЕНИЯ В ЧИЛЛЕРНЫХ СИСТЕМАХ С ЗАМКНУТЫМ КОНТУРОМ ЖИДКОСТНОГО ОХЛАЖДЕНИЯ
Источник поступления информации: Роспатент

Showing 121-130 of 193 items.
30.11.2018
№218.016.a1e0

Устройство для формования изделий сложной формы из полимерных композиционных материалов

Изобретение относится к устройствам для изготовления изделий сложной формы из полимерных композиционных материалов, например рефлекторов зеркальных антенн телекоммуникационных спутников с контурной диаграммой направленности, и может быть использовано в ракетно-космической технике. Устройство...
Тип: Изобретение
Номер охранного документа: 0002673535
Дата охранного документа: 27.11.2018
12.12.2018
№218.016.a581

Способ изготовления крупногабаритного трансформируемого рефлектора

Изобретение относится к технологии изготовления космических антенн с трансформируемым крупногабаритным рефлектором. Способ включает разработку конечно-элементной модели рефлектора и расчёты по этой модели, в т.ч. узлов его формообразующей структуры (ФОС). При этом изготавливают элементы...
Тип: Изобретение
Номер охранного документа: 0002674386
Дата охранного документа: 07.12.2018
23.12.2018
№218.016.aa79

Устройство фиксации элементов конструкции

Изобретение относится к области машиностроения, а более конкретно к фиксирующим устройствам. Устройство фиксации элементов конструкции содержит закрепляемый элемент и удерживающее средство. Последнее выполнено в виде упругодеформируемой втулки, имеющей продольные прорези с одной стороны, с...
Тип: Изобретение
Номер охранного документа: 0002675684
Дата охранного документа: 21.12.2018
19.01.2019
№219.016.b238

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к области электротехники, а именно к способу эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания, и может быть использовано в автономных системах электропитания искусственного спутника Земли (ИСЗ). Способ включает проведение зарядов, в...
Тип: Изобретение
Номер охранного документа: 0002677635
Дата охранного документа: 18.01.2019
24.01.2019
№219.016.b351

Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата и космический аппарат для его реализации

Группа изобретений относится к системе электропитания космического аппарата (КА). В способе питания нагрузки постоянным током в автономной системе электропитания КА от первичного источника, например солнечной батареи (СБ), и вторичного источника электроэнергии, например аккумуляторной батареи...
Тип: Изобретение
Номер охранного документа: 0002677963
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b35c

Способ обезвешивания и возбуждения колебаний при модальных испытаниях и устройство для его осуществления

Группа изобретений относится к наземным испытаниям многозвенных нежестких космических конструкций, работающих в невесомости. При испытаниях совмещают операции по компенсации веса и покоординатному возбуждению - с помощью электродинамических силовозбудителей (ЭС) - вынужденных колебаний...
Тип: Изобретение
Номер охранного документа: 0002677942
Дата охранного документа: 22.01.2019
11.03.2019
№219.016.d5e5

Система испытаний земных станций спутниковой связи

Изобретение относится к измерительной технике и может быть использовано для построения измерительных информационных систем и измерительно-управляющих систем испытаний земных станций спутниковой связи. Технический результат изобретения - повышение пропускной способности системы испытаний земных...
Тип: Изобретение
Номер охранного документа: 0002681516
Дата охранного документа: 07.03.2019
08.04.2019
№219.016.fe55

Устройство управления вектором тяги двигателя коррекции

Изобретение относится к космической технике, а именно к системам поворота блока коррекции в составе космического аппарата (КА), и может быть использовано в аппаратах различных видов, а также в качестве опорно-поворотного устройства для наземных устройств. Устройство управления вектором тяги...
Тип: Изобретение
Номер охранного документа: 0002684229
Дата охранного документа: 04.04.2019
08.04.2019
№219.016.fe98

Способ интеллектуального анализа осциллограмм

Изобретение относится к способам распознавания образов. Технический результат заключается в расширении арсенала средств. Предложен способ интеллектуального графического обучения системы распознавания образов, при котором воспроизводят осциллограмму целиком либо частично на дисплее аналитической...
Тип: Изобретение
Номер охранного документа: 0002684203
Дата охранного документа: 04.04.2019
19.04.2019
№219.017.2b8d

Способ заряда комплекта из "n" литий-ионных аккумуляторных батарей в составе геостационарного искусственного спутника земли

Использование: в области электротехники. Технический результат – обеспечение восстановления полной энергоемкости аккумуляторных батарей (АБ), что приведет к повышению живучести искусственного спутника Земли (ИСЗ), а также обеспечит преемственность зарядных устройств, что позволит снизить его...
Тип: Изобретение
Номер охранного документа: 0002684905
Дата охранного документа: 16.04.2019
+ добавить свой РИД