×
16.08.2019
219.017.c045

Результат интеллектуальной деятельности: Способ испытания керамических оболочек

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ испытания керамических оболочек включает монтаж оболочки на контрольном шпангоуте с нанесенным на него слоем герметика,равным толщине клеевого слоя в узле соединения обтекателя, силовое нагружение оболочки локальным нагревом шпангоута через стенку керамической оболочки, синхронное измерение перемещений наружной поверхности оболочки в одном поперечном сечении датчиками перемещений, расположенными на керамической основе попарно напротив друг друга в одной продольной плоскости, проходящей через ось вращения оболочки, суммирование показаний датчиков после окончания нагрева и выявление изменений диаметральных перемещений оболочки в данной продольной плоскости. Штоки датчиков перемещений, выполненные из материала с низким коэффициентом линейного расширения, устанавливают в теплоизоляционные окна в нагревателе, а между нагревателем и керамической основой размещают теплоизоляционный слой теплопроводностью не более 0,3 Вт/м⋅K. Сособ экспериментально отработан и применяется при определении напряженно-деформированного состояния оболочечных конструкций типа тел вращения с многослойными (металл-композит) шпангоутами. Технический результат - повышение точности при оценке напряженно-деформированного состояния керамических оболочек перед сборкой с многослойным шпангоутом. 3 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Известно, что слабым местом керамического обтекателя является узел клеевого соединения металлического шпангоута с керамической оболочкой.

При тепловых испытаниях керамическая оболочка может разрушится от силового взаимодействия с металлическим шпангоутом из-за разности температурных коэффициентов линейного расширения (ТКЛР) металла и керамики. Кроме того, обтекатель может разрушиться из-за дефектов, которые накапливаются в процессе механической обработки керамической оболочки или по другим причинам в зоне узла соединения оболочки со шпангоутом. Например, при полной механической обработке наружной поверхности керамической оболочки режущим инструментом (алмазными кругами), полученная продольная царапина стеклорезом снижает ее прочность почти в два раза. Это повышает требования неразрушающего контроля керамических оболочек до сборки.

Известны способы тепловых испытаний керамических обтекателей ракет, которые дают возможность оценить прочность керамических оболочек только в составе обтекателя после сборки (патент РФ №2571442, МПК G01N 25/72, G01M 9/04, опубл. 20.12.2015 бюл. 35; патент РФ №2534362, МПК G01M 9/04, опубл. 27.11.2014 бюл. 33; патент РФ №2517790, МПК G01M 9/04, G01N 25/72 опубл. 27.05.2014 бюл. 15).

Недостатком указанных способов является то, что разрушение керамической оболочки приводит к отбраковке всей конструкции или всей партии обтекателей - при повторных испытаниях.

Другим аналогом является способ тепловых испытаний керамических обтекателей ракет по патенту РФ №2531052, МПК G01M 9/04, G01N 25/72, опубл. 20.10.2014 бюл. 29.

Способ заключается в том, что нагреву подвергается металлический шпангоут обтекателя в зоне узла соединения оболочки со шпангоутом, причем нагрев осуществляется изнутри обтекателя с одновременным контролем температуры шпангоута, а заданный режим нагрева задается по формуле, связывающей текущую температуру оболочки, температуру металлического шпангоута для случая нагрева шпангоута со стороны керамической оболочки и тепломеханические свойства керамики и материала шпангоута. Техническое решение указанного способа позволяет расширить температурный диапазон исследования напряженно-деформированного состояния обтекателей и может быть положено в основу 100% контроля обтекателей при теплопрочностных испытаниях в процессе производства, однако обладает тем же недостатком, что и аналоги. Вследствие разрушения керамической оболочки, которое приводит к отбраковке всей конструкции или всей партии обтекателей. Это техническое решение имеет ограниченное применение при воспроизведении полного аэродинамического воздействия (теплового и силового) на испытуемый обтекатель.

Наиболее близким по технической сущности является способ по патенту РФ №2649248, МПК G01N 25/72, опубл. 30.03.2018, бюл. 10, выбранный в качестве прототипа. В этом способе керамическая оболочка монтируется на шпангоуте, на который нанесен слой герметика, воспроизводящий клеевой слой в узле соединения данного типа обтекателя, а силовое нагружение создается за счет локального нагрева внутренней поверхности контрольного шпангоута по определенному закону, при этом синхронно измеряются перемещения наружной поверхности оболочки в одном поперечном сечении таким образом, чтобы датчики перемещений находились попарно, напротив друг друга, в одной продольной плоскости, проходящей через ось вращения оболочки. После окончания нагрева показания этих датчиков суммируются для того, чтобы выявить изменение диаметральных перемещений в данной продольной плоскости в процессе теплового нагружения. Однако прототип также имеет недостаток - нагрев изнутри не может быть применен при испытаниях изделий с многослойными шпангоутами, где кроме температуры, в обязательном порядке, необходимо воспроизвести градиент температуры по стенке шпангоута, который возникает при аэродинамическом нагреве.

Техническим результатом заявляемого изобретения является воспроизведение градиента температуры по стенке шпангоута, повышение точности при оценке напряженно-деформированного состояния керамических оболочек перед сборкой с многослойным шпангоутом.

Указанный технический результат достигается тем, что в способе испытания керамических оболочек, включающем монтаж оболочки на шпангоуте с нанесенным на него слоем герметика равным толщине клеевого слоя в узле соединения обтекателя, силовое нагружение оболочки локальным нагревом шпангоута, синхронное измерение перемещений наружной поверхности оболочки в одном поперечном сечении датчиками перемещений, расположенными на керамической основе попарно напротив друг друга в одной продольной плоскости, проходящей через ось вращения оболочки, суммирование показаний датчиков после окончания нагрева и выявление изменений диаметральных перемещений оболочки в данной продольной плоскости, отличающимся тем, что силовое нагружение оболочки проводят путем нагрева шпангоута через стенку керамической оболочки, штоки датчиков перемещений, выполненные из материала с низким коэффициентом линейного расширения, устанавливают в теплоизоляционные окна в нагревателе, а между нагревателем и керамической основой размещают теплоизоляционный слой теплопроводностью не более 0,3 Вт/м К.

Керамический обтекатель состоит из керамической оболочки, соединенной с металлическим шпангоутом демпфирующим клеем типа Виксинт. Металлический шпангоут, в основном, изготавливается из инваровых сплавов. Это достаточно дорогая деталь, которая по стоимости составляет около 30% всего обтекателя. В последнее время предпринята попытка создания многослойных шпангоутов, в которых результирующее тепловое расширение в сторону керамической оболочки может быть отрегулировано за счет комбинации свойств слоев, например, внутренний слой может быть из простой стали а наружный из углепластикового материала. В этом случае воспроизведение силового взаимодействия при аэродинамическом нагреве между керамической оболочкой и шпангоутом в наземных условиях возможно только при воспроизведение градиента температур по стенке узла соединения обтекателя на всей траектории полета.

На фиг. 1 представлены распределения температуры по стенке узла соединения в разные моменты времени (t1, t2, t3, t4) при нагреве со стороны керамической оболочки (сплошные линии) и с внутренней стороны шпангоута (пунктирные линии). На фиг. 1 керамическая оболочка обозначена цифрой 1, клеевой слой из герметика типа Виксинт цифрой 2, а двухслойный шпангоут (сталь-углепластик) 3, Температуры наружной поверхности обозначены Tw1, внутренней - Tw2 соответственно.

На фиг. 2 приведены графики изменения силового взаимодействия между керамической оболочкой 1 и двухслойным шпангоутом 3 (сталь-углепластик) через демпфирующий слой герметика 2. Цифрой 1 обозначен график изменения силового взаимодействия для нагрева со стороны наружной поверхности керамической оболочки, цифрой 2 график силового взаимодействия при нагреве со стороны внутренней поверхности двухслойного шпангоута 3 (сталь-углепластик). На фиг. 2 также приведена зависимость температуры по толщине стенки в узле соединения обтекателя при одностороннем нагреве фронтальной и внутренней поверхностей.

Из фиг. 2 становится очевидным, что воспроизведение силового взаимодействия между керамической оболочкой 1 и двухслойным шпангоутом 3 (сталь-углепластик) через демпфирующий слой герметика 2 при аэродинамическом нагреве можно осуществить единственным способом - нагревом со стороны керамической оболочки. Для того, чтобы уменьшить погрешность измерения перемещения наружной поверхности оболочки при таком нагреве необходимо выполнить два условия: первое - исключить нагрев керамической основы, на которой закреплены датчики перемещений, второе - минимизировать тепловое расширение передающих элементов (штоков датчиков перемещений) от перемещения наружной поверхности керамической оболочки 1. Первое условие выполняется за счет теплоизоляции керамического основания нагревателя и керамической основы, на которой установлены датчики перемещений. Экспериментально установлено, что наибольшая эффективность достигается, когда теплопроводность теплоизоляционного слоя, установленного между нагревателем и керамической основой, меньше 0,3 Вт/м⋅К. Второе условие выполняется за счет применения материалов для штоков датчиков перемещений с низким КТЛР, например, из кварцевого стекла.

Способ иллюстрирует схема, представленная на фигуре 3. Керамическая оболочка 1, насаженная на многослойный (металл-углепластик) шпангоут 3, на наружную поверхность которого нанесен слой герметика 2, закрепляется в установке, состоящей из керамической основы 5, на которой устанавливаются датчики перемещений 4, причем между испытуемой оболочкой 1 и основой 5 установлен цилиндрический нагреватель 6, состоящий из керамического основания 7 с теплоизолированными окнами 8, через которые проходят штоки 9 датчиков перемещений 4, причем штоки 9 изготовлены из материала с низким коэффициентом температурного линейного расширения (КТЛР), например из кварцевого стекла. На керамическом основании 7 монтируются инфракрасные (ИК) излучатели 10 с электрическими шинами 11. Для уменьшения количества тепла, падающего на керамическую основу 5 с установленными на ней датчиками перемещений 4 между нагревателем 6 и керамическим основанием 7 установлен теплоизолирующий экран 12, теплопроводность которого должна быть не более 0,3 Вт/м К.

Способ экспериментально отработан и применяется при определении напряженно-деформированного состояния оболочечных конструкций типа тел вращения с многослойными (металл-композит) шпангоутами.

Способ испытания керамических оболочек, включающий монтаж оболочки на контрольном шпангоуте с нанесенным на него слоем герметика, равным толщине клеевого слоя в узле соединения обтекателя, силовое нагружение оболочки локальным нагревом шпангоута, синхронное измерение перемещений наружной поверхности оболочки в одном поперечном сечении датчиками перемещений, расположенными на керамической основе попарно напротив друг друга в одной продольной плоскости, проходящей через ось вращения оболочки, суммирование показаний датчиков после окончания нагрева и выявление изменений диаметральных перемещений оболочки в данной продольной плоскости, отличающийся тем, что силовое нагружение оболочки проводят путем нагрева шпангоута через стенку керамической оболочки, штоки датчиков перемещений, выполненные из материала с низким коэффициентом линейного расширения, устанавливают в теплоизоляционные окна в нагревателе, а между нагревателем и керамической основой размещают теплоизоляционный слой теплопроводностью не более 0,3 Вт/м⋅K.
Способ испытания керамических оболочек
Способ испытания керамических оболочек
Способ испытания керамических оболочек
Источник поступления информации: Роспатент

Showing 111-120 of 136 items.
05.09.2019
№219.017.c790

Способ повышения надежности крепления датчика температуры к поверхности керамических материалов

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний керамических обтекателей ракет при радиационном нагреве. Заявлен способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий крепление спаянных...
Тип: Изобретение
Номер охранного документа: 0002699037
Дата охранного документа: 03.09.2019
06.09.2019
№219.017.c7f9

Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий

Изобретение относится к автоматизированным системам управления технологическими процессами производства. Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий, содержит взаимосвязанные между собой персональные компьютеры, управляющие контроллеры...
Тип: Изобретение
Номер охранного документа: 0002699330
Дата охранного документа: 04.09.2019
02.10.2019
№219.017.cbb8

Способ неразрушающего контроля монолитного листа совместно с клеевым слоем в многослойных конструкциях из полимерных композиционных материалов

Использование: для контроля конструкций из полимерных композиционных материалов (ПКМ). Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов, либо в материал листа в соединении «лист - заполнитель», регистрацию сигналов,...
Тип: Изобретение
Номер охранного документа: 0002701204
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cc85

Образец для оценки прочности клеевых соединений при сдвиге

Изобретение относится к испытательной технике, а именно к образцам для контроля и исследования прочности клеевых соединений при сдвиге конструкционных материалов склеенных внахлест, в том числе в условиях высоких температур. Образец для оценки прочности клеевых соединений при сдвиге, содержащий...
Тип: Изобретение
Номер охранного документа: 0002701201
Дата охранного документа: 25.09.2019
12.10.2019
№219.017.d4e6

Способ селективной сборки обтекателей

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении обтекателей высокоскоростных летательных аппаратов различных классов с оболочками из жаростойких керамических материалов. Способ селективной сборки обтекателей включает определение величины...
Тип: Изобретение
Номер охранного документа: 0002702552
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d557

Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает...
Тип: Изобретение
Номер охранного документа: 0002702695
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d5ba

Антенный обтекатель с совмещенными радио- и оптическим каналами

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей ракет класса «воздух-поверхность» или «воздух-воздух». Антенный обтекатель с совмещенными радио- и оптическим каналами включает тонкостенную оболочку из...
Тип: Изобретение
Номер охранного документа: 0002702807
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d626

Применение полисилоксановых герметиков в качестве конструкционных клеев в керамических ракетных обтекателях

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому...
Тип: Изобретение
Номер охранного документа: 0002703214
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d6d5

Установка моллирования стеклянных полусфер

Изобретение относится к установке моллирования стеклянных полусфер. Установка моллирования стеклянных полусфер содержит камеру нагрева, под с противовесами, выполненный составным, состоящим из центральной части, соединенной со штоком, и краевой части с фиксаторами ее положения, механизм подъема...
Тип: Изобретение
Номер охранного документа: 0002703053
Дата охранного документа: 15.10.2019
19.10.2019
№219.017.d835

Способ тепловых испытаний элементов летательных аппаратов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет, в наземных условиях. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002703491
Дата охранного документа: 17.10.2019
Showing 111-120 of 157 items.
06.09.2019
№219.017.c7f9

Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий

Изобретение относится к автоматизированным системам управления технологическими процессами производства. Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий, содержит взаимосвязанные между собой персональные компьютеры, управляющие контроллеры...
Тип: Изобретение
Номер охранного документа: 0002699330
Дата охранного документа: 04.09.2019
12.10.2019
№219.017.d4e6

Способ селективной сборки обтекателей

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении обтекателей высокоскоростных летательных аппаратов различных классов с оболочками из жаростойких керамических материалов. Способ селективной сборки обтекателей включает определение величины...
Тип: Изобретение
Номер охранного документа: 0002702552
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d557

Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает...
Тип: Изобретение
Номер охранного документа: 0002702695
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d5ba

Антенный обтекатель с совмещенными радио- и оптическим каналами

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей ракет класса «воздух-поверхность» или «воздух-воздух». Антенный обтекатель с совмещенными радио- и оптическим каналами включает тонкостенную оболочку из...
Тип: Изобретение
Номер охранного документа: 0002702807
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d626

Применение полисилоксановых герметиков в качестве конструкционных клеев в керамических ракетных обтекателях

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому...
Тип: Изобретение
Номер охранного документа: 0002703214
Дата охранного документа: 15.10.2019
19.10.2019
№219.017.d835

Способ тепловых испытаний элементов летательных аппаратов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет, в наземных условиях. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002703491
Дата охранного документа: 17.10.2019
24.11.2019
№219.017.e632

Способ механической обработки внутренних сферических поверхностей

Изобретение относится к технологии механической обработки резанием и может быть использовано при абразивной обработке сферических поверхностей деталей. Обрабатываемой детали и режущему инструменту сообщают независимые вращения, а обработку проводят радиусным режущим инструментом с радиусом...
Тип: Изобретение
Номер охранного документа: 0002706918
Дата охранного документа: 21.11.2019
01.12.2019
№219.017.e8e6

Способ получения высокоплотных водных шликеров на основе литийалюмосиликатного стекла

Изобретение относится к керамической промышленности и может быть использовано при изготовлении стеклокерамических изделий методом водного шликерного литья в пористые формы. Способ получения высокоплотного водного шликера на основе литийалюмосиликатного стекла включает загрузку в мельницу...
Тип: Изобретение
Номер охранного документа: 0002707832
Дата охранного документа: 29.11.2019
01.12.2019
№219.017.e91a

Способ изготовления керамических изделий

Изобретение относится к керамической и авиационной промышленности, а именно к изготовлению керамических изделий радиотехнического назначения. Предложенный способ изготовления керамических изделий включает измельчение сырья литийалюмосиликатного состава мокрым способом до получения шликера с...
Тип: Изобретение
Номер охранного документа: 0002707618
Дата охранного документа: 28.11.2019
01.12.2019
№219.017.e981

Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству крупногабаритных керамических изделий радиотехнического назначения. Технический результат - повышение производительности при кристаллизации исходного литийалюмосиликатного стекла и повышение качества материала. Способ изготовления изделий из стеклокерамики...
Тип: Изобретение
Номер охранного документа: 0002707639
Дата охранного документа: 28.11.2019
+ добавить свой РИД