×
15.08.2019
219.017.bffd

Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к синтезу новых метатезисных полимеров. Предложены метатезисные поли(3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), имеющие структуру (I), где R=CH, CH, -CH или -CHстепень полимеризации n=2500-4000, средневесовую молекулярную массу M от 9.3⋅10 до 1.2⋅10 и индекс полидисперсности M/M=2.2÷2.6. Предложен также способ получения заявленных метатезисных поли(3-три(н-алкокси)силилтрицикло[4.2.1.0]нон-7-енов) и способ мембранного разделения газов, в котором в качестве материала мембраны используют заявленные метатезисные поли(3-три(н-алкокси)силилтрицикло[4.2.1.0]нон-7-ены. Технический результат - повышение выхода полимера (85-98%, в сравнении с прототипом - 79%), в том числе производительности катализатора (соотношение мономер : катализатор 3000-5000:1, а у прототипа 1000:1), упрощение аппаратурного оформления при сохранении газоразделительных свойств мембран на основе получаемых полимеров. 3 н.п. ф-лы, 7 ил., 1 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к синтезу новых метатезисных полимеров, и более конкретно, к синтезу метатезисных поли(3-триалкоксисилилтрицикло[4.2.1.02,5]нон-7-енов), и может быть использовано для получения мембранных материалов для разделения смесей углеводородов.

Метатезисные кремнийсодержащие полинорборонены являются перспективными материалами для мембранного газоразделения. Ранее в ряде работ было показано, что наличие в боковой цепи Me3Si-групп способствует увеличению проницаемости [Е.Ш. Финкельштейн, М.В. Бермешев, М.Л. Грингольц, Л.Э. Старанникова, Ю.П. Ямпольский. Замещенные полинорборнены - перспективные материалы для газоразделительных мембран // Успехи химии, 2011, 80, с. 362-383; М.V. Bermeshev, Р.Р. Chapala. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties // Progr. Polym. Sci., 2018, 84, c. 1-46; D.A. Alentiev, E.S. Egorova, M.V. Bermeshev, L.E. Starannikova, M.A. Topchiy, A.F. Asachenko, P.S. Gribanov, M.S. Nechaev, Yu.P. Yampolskii, E.S. Finkelshtein. Janus tricyclononene polymers bearing tri(n-alkoxy)silyl side groups for membrane gas separation // J Mater. Chem. A., 2018, 6, c. 19393-19408].

Однако Me3Si-замещенные метатезисные полинорборнены не обладают возможностями для применения их в качестве мембранных материалов для разделения смесей легких (газообразных) углеводородов, поскольку для них уровень проницаемости углеводородов уменьшается с увеличением размеров пенетранта, т.е. селективность газоразделения контролируется диффузией.

Одним из способов повысить проницаемость указанных углеводородов для метатезисных полимеров является введение в их боковую цепь гибких заместителей, например, силоксановых и этоксисилильных групп (соответственно, Si-O-Si или Si-O-C-фрагментов) [М.V. Bermeshev, А.V. Syromolotov, L.Е. Starannikova, М.L. Gringolts, V.G. Lakhtin, Yu. P. Yampolskii, E.Sh. Finkelshtein. Glassy Polynorbornenes with Si-O-Si Containing Side Groups. Novel Materials for Hydrocarbon Membrane Separation // Macromolecules, 2013, 46, c. 8973-8979; B.J. Sundell, J.A. Lawrence III, D.J. Harrigan, J.T. Vaughn, T.S. Pilyugina, D.R. Smith. Alkoxysilyl functionalized polynorbornenes with enhanced selectivity for heavy hydrocarbon separations // RSC Advances, 2016, 6, c. 51619-51628]:

Метатезисные полинорборнены, содержащие в боковой цепи Si-O-Si-фрагменты, в отличие от аналогичных полимеров, содержащих Me3Si-группы, проявляют контролируемую растворимостью селективность при разделении углеводородов: значения идеальной селективности бутан/метан для этих полимеров достигают 7.1 [М.V. Bermeshev, А.V. Syromolotov, L.Е. Starannikova, М.L. Gringolts, V.G. Lakhtin, Yu. P. Yampolskii, E. Sh. Finkelshtein. Glassy Polynorbornenes with Si-O-Si Containing Side Groups. Novel Materials for Hydrocarbon Membrane Separation // Macromolecules, 2013, 46, c. 8973-8979].

Наиболее близкими к заявленным являются способ получения метатезисного полимера и способ разделения углеводородных газов [В.J. Sundell, J.A. Lawrence III, D.J. Harrigan, J.T. Vaughn, T.S. Pilyugina, D.R. Smith. Alkoxysilyl functionalized polynorbornenes with enhanced selectivity for heavy hydrocarbon separations // RSC Advances, 2016, 6, c. 51619-51628].

Полинорборнен формулы

получают метатезисной полимеризацией. Способ включает растворение триэтоксилилнорборнена в толуоле, добавление к нему раствора в толуоле катализатора Граббса 1-го поколения при ссоотношении мономер : катализатор равном 1000:1, перемешивание и добавление спустя 24 ч винилэтилового эфира для завершения полимеризации. Затем полимер высушивают и выделяют. Выход составляет 79%.

Недостаток прототипа заключается в недостаточно высоком выходе полимера, в том числе недостаточно высокой производительности катализатора, т.е. выходе полимера на единицу катализатора.

Кроме того, для синтеза полимера по прототипу в лабораторных условиях используют главбокс, представляющий перчаточную камеру для работы в инертной атмосфере, что также является недостатком прототипа. Так как, применение технологии получения метатезисных полинорборненов по прототипу в опытно-промышленном или промышленном масштабе неминуемо приведет к использованию дорогостоящей техники и аппаратурного оформления и, как следствие, к высоким материальным и энергозатратам.

По способу разделения газообразных углеводородов (смесей пропан/метан, бутан/метан) из полученного метатезисного полимера получают мембраны и используют их для разделения смесей газообразных углеводородов.

Селективность разделения недостаточно высока, например, для пары бутан/метан она составляет 22.

Задача предлагаемого технического решения заключается в разработке способа получения метатезистных полинорборненов, позволяющего получать полимеры с большим выходом, в том числе, с большим выходом полимера на единицу катализатора, при сохранении высоких молекулярных масс и хороших пленкообразующих свойств, а также в разработке на основе этих полимеров мембранного способа, позволяющего проводить разделение углеводородов с высокой селективностью при сохранении высокой проницаемости.

Поставленная задача решается тем, что метатезисные поли(3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-ены) имеют общую формулу:

, где

R=СН3, С2Н5, н-C3H7, н-C4H9,

степень полимеризации n=2500-4000,

средневесовую молекулярную массу Mw от 9.3⋅105 до 1.2⋅106

и индекс полидисперсности Mw/Mn=2.2÷2.6.

Поставленная задача также решается тем, что в способе получения метатезисных поли(3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-енов), включающем метатезисную полимеризацию раствора мономеров в органическом растворителе в присутствии катализатора Граббса 1-го поколения, получают заявленные метатезисные поли(3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-ены) при соотношении мономер : катализатор равном 3000-5000:1.

Поставленная задача также решается тем, что в способе мембранного разделения газов, включающий их подачу с одной стороны селективно-проницаемой мембраны и отбор проникающих через нее компонентов, в качестве материала мембраны используют заявленные метатезисные поли(3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-ены.

Мономеры - 3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-ены - синтезируют, как описано в разработанном ранее способе [D.A. Alentiev, Р.P. Chapala, М.P. Filatova, Е. Sh. Finkelshtein, М.V. Bermeshev. Synthesis of novel tricyclononenes containing alkoxysilyl groups // Mendeleev Communications, 2016, 26, c. 530-531] по реакции, в присутствии катализаторов Граббса 1-го поколения:

Метатезисную полимеризацию раствора мономеров ведут в органическом растворителе (например, толуоле, дихлорэтане) в присутствии катализатора Граббса 1-го поколения.

Катализатор Граббса первого поколения широко известен и имеет формулу:

Краткое описание чертежей:

Фиг. 1. 1Н-ЯМР-спектр поли(3-триметоксисилилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 2. 13С-ЯМР-спектр поли(3-триметоксисилилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 3. 29Si-ЯМР-спектр поли(3-триметоксисилилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 4. 1Н-ЯМР-спектр поли(3-три(н-бутокси)силилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 5. 13С-ЯМР-спектр поли(3-три(н-бутокси)силилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 6. 29Si-ЯМР-спектр поли(3-три(н-бутокси)силилтрицикло[4.2.1.02,5]нон-7-ена)

Фиг. 7. Дифрактограммы синтезированных полимеров, обладающих следующей структурной формулой:

Структуру синтезированных полимеров подтверждают, используя 1Н, 13С и 29Si ЯМР-спектроскопию. Спектры представлены на фиг. 1-6. На спектрах полученных полимеров отчетливо проявляются сигналы двойных связей (5.0-5.5 м.д.), и их относительная интегральная интенсивность составляет 2 единицы на мономерное звено, что свидетельствует о том, что полимеризация протекает по метатезисной схеме, с образованием ненасыщенного полимера, содержащего в каждом мономерном звене двойную связь.

Варьирование соотношения мономер/катализатор и концентрации мономера в реакционной смеси позволило найти условия синтеза, при которых с хорошими выходами образуются высокомолекулярные полимеры. Были получены полимеры, обладающие молекулярными массами (Mw) в диапазоне от 9.3⋅105 до 1.2⋅106, в зависимости от длины заместителя. По данным рентгенофазового анализа (РФА) полимеры являются аморфными. Их дифрактограммы представлены на фиг. 7.

Синтезированные полимеры оказались стеклообразными либо высокоэластическими, в зависимости от длины алкокси-группы: в ряду метокси, этокси, н-пропокси, н-бутокси они обладают температурами стеклования 61, 16, -5 и -44°С соответственно. Термостойкость полимеров находится на уровне, характерном для метатезисных полинорборненов: значения температуры разложения для всех полимеров находятся в диапазоне 350-360°С и слабо зависят от длины алкокси-группы.

На основе полученных метатезисных полимеров получают мембраны. Для испытания мембранного разделения газов осуществляют подачу газов с одной стороны селективно-проницаемой мембраны и отбор проникающих через нее компонентов с другой стороны. Испытания показали, что синтезированные полимеры обладают сопоставимыми с прототипом значениями проницаемости, при этом полимеры, содержащие этокси, н-пропокси и н-бутокси-группы, обладают более высокими значениями селективности бутан/метан (на 10-50% выше, чем для прототипа), что позволяет более эффективно разделять рассматриваемые газы.

ЯМР-спектры полимеров снимают на спектрометре Bruker Avance™ DRX400, при 400.1 МГц для спектров 1Н, 100.6 МГц для спектров 13С, 79.5 МГц для спектров 29Si. В качестве растворителя использовали абсолютный CDCl3. Отнесение сигналов осуществляли по сигналу остаточных протонов CDCl3 для спектров 1Н, по центральному пику CDCl3 для спектров 13С, по внутренним настройкам прибора для спектров 29Si.

Молекулярно-массовые характеристики образцов полимеров были определены методом гель-проникающей хроматографии (ГПХ) на приборе "Waters" в растворе абсолютного тетрагидрофурана с калибровкой по полистирольным стандартам.

Нижеследующие примеры иллюстрируют настоящее изобретение, но не ограничивают область его применения.

Синтез полимеров

Синтез полимеров осуществляют путем метатезисной полимеризации 3-три(н-алкокси)силилтрицикло[4.2.1.02,5]нон-7-енов в присутствии катализатора Граббса первого поколения. В качестве растворителя используют толуол. Реакцию проводят при комнатной температуре. Полимеризацию останавливают путем добавления винилэтилового эфира и перемешивания в течение 10 минут. Все процедуры синтеза, в том числе и выделения (включая стадию осаждения) осуществляют в среде аргона, с использованием абсолютных растворителей.

Пример 1.

В предварительно отвакуумированный и заполненный аргоном сосуд Шленка помещают мономер - 3-триметоксисилилтрицикло[4.2.1.02,5]нон-7-ен (1.47 г, 6.11 ммоль), 30 мл абсолютного толуола и 2.91 мл (2.04⋅10-3 ммоль, 7.0⋅10-4 М) раствора катализатора в толуоле (соотношение мономер : катализатор составляет 3000:1) при перемешивании. Затем реакционную смесь оставляют при комнатной температуре на 120 ч. Затем ее растворяют в 50 мл абсолютного толуола, и полимеризацию останавливают. Полимер осаждают в абсолютный метанол и высушивают в вакууме. Далее полимер дважды переосаждают из абсолютного толуола в абсолютный метанол и сушат до постоянной массы при 40°С.

Получают метатезисный поли(3-триметоксисилилтрицикло[4.2.1.02,5]нон-7-ен) со структурной формулой:

Выделенный полимер представляет собой белое твердое вещество.

Выход полимера составляет: 98%.

Полимеру соответствуют Mw=9.6⋅105, Mw/Mn=2.6, ТС=61°С.

Хранят полимер в атмосфере аргона.

Полученному полимеру соответствуют следующие характеристики:

1Н ЯМР (CDCl3): 5.39-5.00 (м., 2Н, -НС=СН-), 3.67-3.36 (м., 9Н, О-СН3), 3.02-1.45 (м., 8Н), 1.34-1.04 (м., 1Н).

13С ЯМР (CDCl3): 134.17-130.90 (м., -НС=СН-), 54.19-42.06 (м.), 28.78-24.09 (м.), 21.45-16.12 (м.).

29Si ЯМР (CDCl3): -44.03-(-)44.64 (м.), -46.01 (м.).

Пример 2.

В предварительно отвакуумированный и заполненный аргоном сосуд Шленка помещают мономер - 3-триэтоксисилилтрицикло[4.2.1.02,5]нон-7-ен (1.46 г, 5.17 ммоль), 20 мл абсолютного толуола и 1.48 мл (1.03⋅10-3 ммоль, 7.0⋅10-4 М) раствора катализатора в толуоле (соотношение мономер : катализатор составляет 5000:1) при перемешивании. Затем реакционную смесь оставляют при комнатной температуре на 120 ч. Затем ее растворяют в 50 мл абсолютного толуола, и полимеризацию останавливают. Полимер осаждают в абсолютный метанол и высушивают в вакууме. Далее полимер дважды переосаждают из абсолютного толуола в абсолютный метанол и сушат до постоянной массы при 40°С.

Получают метатезисный поли(3-триэтоксисилилтрицикло[4.2.1.02,5]нон-7-ен) со структурной формулой

Выделенный полимер представляет собой белое твердое вещество.

Выход полимера составляет: 89%.

Полимеру соответствуют Mw=1.0⋅106, Mw/Mn=2.5. ТС=16°С.

Хранят полимер в атмосфере аргона.

Полученному полимеру соответствуют следующие характеристики:

1Н ЯМР (CDCl3): 5.42-4.99 (м., 2Н, -НС=СН-), 3.93-3.60 (м., 6Н, О-СН2-СН3), 3.09-0.95 (м., 9Н), 1.34-1.03 (м., 9Н, O-СН2Н3).

13С ЯМР (CDCl3): 133.84-131.05 (м., -НС=СН-), 58.27 (м., O-СН2-СН3), 54.00-49.97 (м.), 48.94-44.91 (м.). 44.90-42.16 (м.), 28.18-26.87 (м.), 26.28-24.98 (м.), 22.03-19.25 (м.), 18.39 (м., O-СН2-СН3).

29Si ЯМР (CDCl3): -47.13-(-)47.73 (м.), -49.28 (м.).

Пример 3.

В предварительно отвакуумированный и заполненный аргоном сосуд Шленка помещают мономер - 3-три(н-пропокси)силилтрицикло[4.2.1.02,5]нон-7-ен (2.83 г, 8.72 ммоль), 4 мл абсолютного толуола и 4.15 мл (2.91⋅10-3 ммоль, 7.0⋅10-4 М) раствора катализатора в толуоле (соотношение мономер : катализатор составляет 3000:1) при перемешивании. Затем реакционную смесь перемешивают 2 часа. При этом каждый раз, когда реакционная смесь становится настолько вязкой, что затрудняется перемешивание, ее разбавляют 6 мл абсолютного толуола. Затем полимеризацию останавливают. Полимер осаждают в абсолютный метанол и высушивают в вакууме. Далее полимер дважды переосаждают из абсолютного толуола в абсолютный метанол и сушат до постоянной массы при 40°С.

Получают метатезисный поли(3-три(н-пропокси)силилтрицикло[4.2.1.02,5]нон-7-ен) со структурной формулой

Выделенный полимер представляет собой бесцветную каучукообразную массу.

Выход полимера составляет: 85%.

Полимеру соответствуют Mw=1.2⋅106, Mw/Mn=2.6. ТС=-5°С.

Хранят полимер в атмосфере аргона.

Полученному полимеру соответствуют следующие характеристики:

1Н ЯМР (CDCl3): 5.44-4.96 (м., 2Н, -НС=СН-), 3.81-3.49 (м., 6Н, O-СН2-СН2-СН3), 3.38-2.17 (м., 5Н), 2.13-1.69 (м., 3Н), 1.62-1.36 (м., 6Н, O-СН2Н2-СН3), 1.35-1.03 (м., 1Н), 1.02-0.71 (м., 9Н, O-СН2-СН2Н3).

13С ЯМР (CDCl3): 133.73-130.90 (м., -НС=СН-), 64.44 (м., O-СН2-СН2-СН3), 53.64-50.47 (м.), 48.59-44.83 (м.), 44.60-42.60 (м.), 25.77 (м., O-СН2-СН2-СН3), 22.06-20.42 (м.), 18.54-17.83 (м.), 10.26 (м., O-СН2-СН2-СН3).

29Si ЯМР (CDCl3): -47.88 (м.), -49.58 (м.).

Пример 4.

В предварительно отвакуумированный и заполненный аргоном сосуд Шленка помещают мономер - 3-три(н-бутокси)силилтрицикло[4.2.1.02,5]нон-7-ен (2.03 г, 5.54 ммоль), 4 мл абсолютного толуола и 2.64 мл (1.85⋅10-3 ммоль, 7.0⋅10-4 М) раствора катализатора в толуоле (соотношение мономер : катализатор составляет 3000:1) при перемешивании. Затем реакционную смесь перемешивают 2 часа. При этом каждый раз, когда реакционная смесь становится настолько вязкой, что затрудняется перемешивание, ее разбавляют 4 мл абсолютного толуола. Затем полимеризацию останавливают. Полимер осаждают в абсолютный метанол и высушивают в вакууме. Далее полимер дважды переосаждают из абсолютного толуола в абсолютный метанол и сушат до постоянной массы при 40°С.

Получают метатезисный поли(3-три(н-бутокси)силилтрицикло[4.2.1.02,5]нон-7-ен) со структурной формулой

Выделенный полимер представляет собой бесцветную каучукообразную массу.

Выход полимера составляет: 89%.

Полимеру соответствуют Mw=9.3⋅105, Mw/Mn=2.2. ТС=-44°С.

Хранят полимер в атмосфере аргона.

Полученному полимеру соответствуют следующие характеристики:

1Н ЯМР (CDCl3): 5.55-4.89 (м., 2Н, -НС=СН-), 3.90-3.48 (м., 6Н, О-СН2-СН2-СН2-СН3), 3.38-2.14 (м., 5Н), 2.13-1.04 (м., 4Н), 1.64-1.42 (м., 6Н, О-СН2-CH2-СН2-СН3), 1.42-1.27 (м., 6Н, O-СН2-СН2Н2-СН3), 1.04-0.73 (м., 9Н, O-СН2-СН2-СН2Н3).

13С ЯМР (CDCl3): 133.64-130.72 (м., -НС=СН-), 62.53 (м., O-СН2-СН2-СН2-СН3), 53.91-50.53 (м.), 48.67-42.37 (м.), 34.73 (м., O-СН2-СН2-СН2-СН3), 28.41-25.04 (м.), 22.30-20-68 (м.), 19.52-17.74 (м.), 18.92 (м., O-СН2-СН2-СН2-СН3), 13.88 (м., O-СН2-СН2-СН2-СН3).

29Si ЯМР (CDCl3): -47.89 (м.), -49.50 (м.).

Измерение коэффициентов газопроницаемости

Для исследования газопроницаемости полимеров использовали гомогенные (сплошные) пленки. Для этого полимер, полученный, как это описано в примерах 1 и 2, в количестве, необходимом для образования пленки толщиной 80-130 мкм (500-800 мг) растворяют в абсолютном толуоле в количестве, необходимом для образования раствора концентрацией 5-6 масс. %. Затем, в случаях, когда это необходимо (если полимер высокоэластический), к раствору полимера добавляют раствор катализатора сшивания - диметилдинеодеканоата олова в толуоле концентрацией 1 мг/мл в таком количестве, чтобы его было в 200-1000 раз по массе меньше, чем полимера. Затем раствор помещают в стальной цилиндр с горизонтально установленным дном из целлофановой пленки и оставляют при комнатной температуре для удаления растворителя и медленной сушки. Испытания газопроницаемости проводят на хроматографической установке после сушки в вакууме в течение трех суток.

Хроматографическая установка для измерения проницаемости включает проточную ячейку, в которую помещают мембрану (описанную выше пленку), герметично уплотненную по краям резиновым кольцом. Сверху мембраны пропускают испытуемый газ, снизу мембраны пропускают газ-носитель, гелий (при изучении проницаемости Не и Н2 газом-носителем является азот). Поток газа-носителя, содержащий проникший через мембрану испытуемый газ, направляют в хроматограф, отбирая пробы с помощью крана-дозатора. По измеренному составу смеси и объемной скорости газовой смеси определяют коэффициент проницаемости при перепаде парциального давления испытуемого газа равному 1 атм. Измерения проводят при температуре 20-22°С. Были измерены коэффициенты проницаемости для Не, Н2, O2, N2, CO2, СН4, С2Н6, С3Н8 и н-С4Н10.

Испытания газопроницаемости полученных метатезисных полимеров показали, что для этих полимеров в ряду метокси-н-бутокси проницаемость по всем газам увеличивается. Проницаемость легких газов (Н2 и Не) для этих полимеров находится в диапазоне 40-350 Баррер, проницаемоть O2 - от 16 до 190 Баррер, проницаемость N2 - от 5 до 70 Баррер, проницаемость CO2 - от 190 до 1100 Баррер.

Исследование газопроницаемости углеводородов для синтезированных полимеров показало, что они обладают невысоким уровнем проницаемости (P(CH4)=10-250 Баррер, в зависимости от длины алкокси-группы; P(C4H10)=30-8100 Баррер), сопоставимым с прототипом (P(СН4)=100 Баррер; Р(С4Н10)=2100 Баррер). С другой стороны, они обладают высокой селективностью разделения углеводородов, контролируемой растворимостью (Таблица 1). Идеальная селективность разделения пары газов рассчитывается как отношение проницаемостей этих газов. Значения селективности бутан/метан для синтезированных полимеров превышали значение для прототипа и составляли 24-32, в зависимости от длины алкокси-группы. Наибольшей селективностью обладает полимер, содержащий три(н-бутокси)силильные группы.

1пленка была подготовлена без сшивания; 2пленка была предварительно сшита с использованием 0.1 масс. % катализатора

Использование предлагаемого технического решения позволяет получить следующие технические результаты:

Получены новые метатезисные полимеры, обладающие Mw в диапазоне от 9.3⋅105 до 1.2⋅106 в зависимости от длины заместителя. Эти молекулярные массы обеспечивает хорошие пленкообразующие свойства полученных полимеров.

Предлагаемый способ позволяет получать метатезисные полимеры с более высоким выходом (85-98%, в сравнении с прототипом - 79%) и более простым апаратурным оформлением, а именно - с использованием более дешевой техники Шленка, а не главбокса.

Предлагаемый способ позволяет получать метатезисные полимеры с большей производительностью катализатора, а именно, с большим выходом метатезисных полинорборненов на единицу катализатора по сравнению с прототипом. Так, по прототипу получают 79% выхода полимера при соотношения мономер : катализатор в синтезе 1000:1, а в предлагаемом способе - 3000-5000:1, что является важной характеристикой процесса в случае его применения в промышленном масштабе.

Синтезированные полимеры обладают сопоставимыми с прототипом значениями проницаемости, при этом значения селективности, например, для бутан/метан в случае полимеров, содержащих (EtO)3Si, (PrO)3Si и (BuO)3Si-группы, на 10-50% выше, чем для прототипа, что позволит более эффективно разделять рассматриваемые газы.


Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Метатезисные поли (3-триалкоксисилилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения углеводородных газов с их применением
Источник поступления информации: Роспатент

Showing 11-20 of 141 items.
20.11.2013
№216.012.822f

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002499003
Дата охранного документа: 20.11.2013
27.01.2014
№216.012.9ae2

Способ получения катализатора и способ синтеза олефинов c-c в присутствии катализатора, полученного этим способом

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или...
Тип: Изобретение
Номер охранного документа: 0002505356
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9ddb

Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002506119
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.cc60

Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO/AlO=37, содержащего...
Тип: Изобретение
Номер охранного документа: 0002518091
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d050

Фармацевтическая композиция

Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию для перорального применения для снижения уровня глюкозы в крови, содержащую инсулин, водорастворимую органическую кислоту, водорастворимый инертный наполнитель и вспомогательное вещество,...
Тип: Изобретение
Номер охранного документа: 0002519099
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.ddc1

Аддитивный поли(моно(триметилгермил)-замещенный трициклононен), мономер для его получения и способ разделения газовых смесей с помощью мембран на основе аддитивного поли(моно(триметилгермил)-замещенного трициклононена)

Изобретение относится к аддитивному поли(моно(триметилгермил)-замещенному трициклононену) общей структурной формулы: где n=300-2400 (степень полимеризации). Величина средневесовой молекулярной массы M полимера составляет (7.1-57)·10 г/моль и индекс полидисперсности M/M составляет 1.9-2.6....
Тип: Изобретение
Номер охранного документа: 0002522555
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddfd

Способ совместной переработки нефтяных фракций и полимерных отходов

Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение...
Тип: Изобретение
Номер охранного документа: 0002522615
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de92

Способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты)

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в...
Тип: Изобретение
Номер охранного документа: 0002522764
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f462

Способ синтеза сополимеров акрилонитрила (варианты)

Настоящее изобретение относится к получению сополимеров акрилонитрила. Описан способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание...
Тип: Изобретение
Номер охранного документа: 0002528395
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f470

Способ получения диметилового эфира методом одностадийного синтеза и его выделения

Предлагаемое изобретение относится к способу получения диметилового эфира, который используют в газовых приборах бытового назначения и как пропеллент для аэрозолей, методом одностадийного синтеза и его выделения. Способ включает подачу синтез-газа, проведение реакции в реакторе адиабатического...
Тип: Изобретение
Номер охранного документа: 0002528409
Дата охранного документа: 20.09.2014
Showing 11-18 of 18 items.
27.04.2019
№219.017.3cc0

Способ получения 5-винил-2-норборнена

Предложен способ получения 5-винил-2-норборнена, включающий термическую содимеризацию 1,3-бутадиена и циклопентадиена по реакции Дильса-Альдера в присутствии ингибитора радикальной полимеризации - 4-трет-бутилкатехола, охлаждение реакционной смеси и выделение целевого продукта, где в...
Тип: Изобретение
Номер охранного документа: 0002686090
Дата охранного документа: 24.04.2019
06.06.2019
№219.017.746f

Мембрана для разделения метансодержащей смеси газов и способ её получения

Изобретение относится к области синтеза перфторированного полимера полиперфтор (2-метил-2-этил-1,3-диоксола) для создания газоразделительной мембраны на его основе. Мембрана для разделения метансодержащей смеси газов содержит в качестве полимера полиперфтор (2-метил-2-этил-1,3-диоксол). Способ...
Тип: Изобретение
Номер охранного документа: 0002690460
Дата охранного документа: 03.06.2019
01.12.2019
№219.017.e95d

Способ получения 2-этилиденнорборнана

Изобретение относится к способу получения 2-этилиденнорборнана, включающему гидрирование 5-этилиден-2-норборнена водородом в присутствии никелевого катализатора. Способ характеризуется тем, что в качестве катализатора используют никель Ренея, взятый в количестве 1-2 мас.% на...
Тип: Изобретение
Номер охранного документа: 0002707563
Дата охранного документа: 28.11.2019
12.04.2023
№223.018.464c

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации....
Тип: Изобретение
Номер охранного документа: 0002739190
Дата охранного документа: 21.12.2020
12.04.2023
№223.018.4656

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2, 2'- бис (норборнанила) (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемкого топлива, в частности ракетного и для...
Тип: Изобретение
Номер охранного документа: 0002739242
Дата охранного документа: 22.12.2020
23.05.2023
№223.018.6d45

Способ получения аддитивных полимеров на основе норборнена (варианты)

Предлагаемое изобретение относится к двум вариантам способа получения полимеров на основе соединений норборненового ряда. Согласно одному из вариантов способ получения аддитивного полимера соединения на основе норборнена путем смешения соединения на основе норборнена с органическим...
Тип: Изобретение
Номер охранного документа: 0002768465
Дата охранного документа: 24.03.2022
16.06.2023
№223.018.7a90

Способ получения 2-этилиденнорборнана

Изобретение относится к способу получения 2-этилиденнорборнана путем гидрирования 5-этилиден-2-норборнена. Способ характеризуется тем, что гидрирование 5-этилиден-2-норборнена ведут гидразингидратом в присутствии окислителя, в качестве которого используют воздух, и катализатора, в качестве...
Тип: Изобретение
Номер охранного документа: 0002739032
Дата охранного документа: 21.12.2020
17.06.2023
№223.018.7eb2

Дициклопропанированный 5-винил-2-норборнен и способ его получения

Изобретение относится к органическому синтезу и более конкретно к способу получения дициклопропанированного 5-винил-2-норборнена, включающему растворение 5-винил-2-норборнена в органическом растворителе, добавление соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С, добавление...
Тип: Изобретение
Номер охранного документа: 0002775004
Дата охранного документа: 27.06.2022
+ добавить свой РИД