×
14.08.2019
219.017.bf66

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ МАГНИЙ-НЕОДИМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей. Способ включает введение в жидкий магний смеси фторида неодима с флюсом. В качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорида магния и фторида кальция. Расплавляют полученную смесь и осуществляют перемешивание со скоростью от 150 до 350 об/мин при температуре от 710 до 770°С и времени выдержки от 20 до 40 мин с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры. Осуществляют отстаивание, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав. Техническим результатом является повышение степени извлечения неодима в магниевую лигатуру. 5 пр.

Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей.

Известен электролитический способ получения лигатур магний-неодим (Ахмедов М.Ч. Электролитическое приготовление лигатур алюминия и магния с неодимом / М.Ч. Ахмедов, В.А. Лебедев // Инновации в материаловедении и металлургии: материалы IV Международной интерактивной научно-практической конференции. Екатеринбург: Изд-во Урал, ун-та, 2015. С. 127-130.), включающий электролиз расплавленных солей, содержащих NdCl3 в расплаве KCl-NaCl, при катодной плотности тока равной 0,10 А/см2 для обоих электродов. Электролиз проводили с нерастворимым анодом из графита при температуре 738°С. Количество пропущенного электричества соответствовало получению лигатур, содержащих 30 вес. % неодима.

Недостатки данного технического решения также связаны с низким процентом перевода неодима в катодный продукт, непостоянством его состава, сложностью промышленного синтеза безводного гигроскопичного NdCl3, выделением на аноде газообразного хлора.

Известен способ получения магниевых сплавов с редкоземельными металлами (патент СССР №66689722, опубликован 7.05.1960). Способ включает ввод в расплавленный магний при температуре от 700 до 800°С редкоземельных металлов из сплава солей одного из следующих составов, мас. %: 1) от 50 до 65 фторидов редкоземельных металлов, от 20 до 30% хлористого калия, от 15 до 20% хлористого натрия и от 1 до 2% фтористого кальция; 2) от 50 до 75% фторидов редкоземельных металлов, от 20 до 30 хлористого лития и от 8 до 15 фтористого калия. Фтористые соли вводят в расплав порциями при тщательном перемешивании, после чего расплав выдерживают от 10 до 30 минут и затем разливают в чушки. Плавку ведут под слоем флюса одного из следующих составов мас. %: 1) от 47 до 51% CaCl2, от 26 до 29% BaCl2, от 19 до 21% NaCl и от 2 до 5% CaF2. Усвоение редкоземельных металлов, вводимых из расплава солей, составляет от 65 до 80%.

Недостатком способа является невысокое извлечение редкоземельных металлов в магниевый сплав, причем существует большая вероятность загрязнения сплава за счет попадания солевых включений в отливку в процессе разливки сплава.

Известен способ получения чушкового сплава магний-неодим-цирконий (авторское свидетельство СССР №1737917, опубликован 27.10.1995), включающий введение в расплав магния оксида неодима в смеси с флюсом, выдержку, отстаивание, отделение донного осадка, введение магниево-циркониевой лигатуры, при этом введение оксида неодима осуществляют в присутствии фторида неодима. Среднее извлечение неодима в готовый сплав составляет 83,7%.

Недостатком способа является невысокое извлечение неодима в магниевый сплав.

Известен способ получения лигатуры магний-цирконий-редкоземельные металлы (патент РФ №2234552, опубликован 20.08.2004), включающий ввод фторцирконата калия в расплав хлоридов калия и натрия при температуре расплава от 680 до 700°С, затем ввод хлорида редкоземельного металла для проведения полной обменной реакции между фторцирконатом калия и хлоридом редкоземельного металла, после чего подают порцию магния, затем сливают соли через 30 мин, а в полученную лигатуру вводят вторую порцию магния в количестве, обеспечивающем содержание циркония 1,5-35%, редкоземельных металлов 3,5-35%, магния остальное.

Недостатком способа является невысокое извлечение восстанавливаемого металла в магниевую лигатуру. А также использование в солевой смеси хлоридов редкоземельных металлов. Известно, что хлориды многих редкоземельных металлов характеризуются нестабильностью на воздухе, и при хранении на воздухе способны набирать влагу.

Известен способ получения чушкового сплава магний-неодим-цирконий (авторское свидетельство СССР №1678075, опубликован 27.11.1995), принятый за прототип, включающий ввод в жидкий магний смеси фторида неодима с флюсом из хлоридов щелочных и щелочноземельных элементов в соотношении 2:1 и магнийциркониевой лигатуры, перемешивание и отстаивание, при этом в смеси поддерживают соотношение между фторидом неодима и хлоридом магния 100:1-4, причем флюс используют в виде гранул размером от 0,4 до 2,5 мм. В качестве флюса используют отработанный электролит магниевых электролизеров состава, % мас.: хлорид магния от 4 до 6, хлорид натрия от 8 до 18, хлорид калия от 72 до 87.

Недостатком способа является невысокий переход неодима в лигатуру.

Техническим результатом изобретения является повышение степени извлечения неодима в магниевую лигатуру.

Технический результат достигается тем, что в качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорид магния и фторид кальция, перемешивание проводят со скоростью от 150 до 350 об/мин, при температуре от 710 до 770°С, и времени выдержки от 20 до 40 мин, с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Способ осуществляется следующим образом. Предварительно в реакционный тигель загружают магний и расплавляют его в плавильной печи, а затем вводят смесь фторида неодима с флюсом, в качестве которого используют хлорид калия, хлорид натрия, хлорид кальция, хлорид магния и фторид кальция. После ввода солевой смеси проводят перемешивание расплава со скоростью от 150 до 350 об/мин. Проведение полной обменной реакции осуществляют при температуре от 710 до 770°С, и времени выдержки от 20 до 40 мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Выбранный состав солевой смеси для получения лигатуры магний-неодим отвечает предъявляемым требованиям к флюсу, применяемому при плавке магния и его сплавов. Компоненты, входящие в состав солевой смеси, имеют низкую температуру плавления, низкие значения вязкости и летучести, а образующиеся в результате реакции магниетермического восстановления соединения легко удаляются из расплава. Хлориды калия, натрия, кальция и магния служат средой для протекания процесса металлотермического восстановления неодима. Также хлориды калия, натрия, кальция и магния выполняют функцию защитной основы флюса, задачей которого является снижение потерь металла от окисления. Кроме того, в приведенной смеси хлоридов, хорошо растворяется продукт, металлотермической реакции, а именно тугоплавкий фторид магния, который может покрывать частицы фторида неодима в ходе протекания реакции и, в результате чего, тормозить реакцию восстановления неодима. Фторид кальция в солевую смесь добавляют для исключения грануляции полученной лигатуры магний-неодим.

Металлотермическая реакция расплавленных солей и магния осуществляется при температуре от 710 до 770°С. Заданный диапазон температур, при котором проводится металлотермическая реакция восстановления, объясняется высоким выходом неодима. С понижением температуры ниже 710°С не достигается заявленный технический результат, а именно не удается достигнуть высокого извлечения неодима в магниевую лигатуру. При повышении температуры выше 770°С увеличиваются безвозвратные потери магния и неодима.

Время протекания процесса восстановления неодима из солевой смеси задано из диапазона от 20 до 40 мин. Заданный диапазон времени выдержки, объясняется высоким выходом неодима. При времени выдержки менее 20 минут не достигается заявленный технический результат, а при времени выдержки более 40 минут увеличиваются безвозвратные потери магния и неодима.

Перемешивание расплава со скоростью от 150 до 350 об/мин проводят с целью увеличения скорости протекания полной обменной реакции между расплавленными солями и магнием. При скорости перемешивания менее 150 об/мин не достигается эффективное перемешивание расплава, в этом случае процесс восстановления характеризуется малой скорости диффузии, что приводит к низкому извлечению неодима. При скорости перемешивания более 350 об/мин могут повышаться безвозвратные потери магния. Также путем перемешивания достигается требуемая однородность химического состава получаемой лигатуры магний-неодим.

Способ поясняется следующими примерами.

Пример 1. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 710°С, времени выдержки 20 мин и перемешивании со скоростью 150 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 96,4% от исходного содержания при загрузке.

Пример 2. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 750°С, времени выдержки 30 мин и перемешивании со скоростью 200 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 99,6% от исходного содержания при загрузке.

Пример 3. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 770°С, времени выдержки 40 мин и перемешивании со скоростью 150 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру 96,8% от исходного содержания при загрузке.

Кроме того, приведены примеры реализации предлагаемого способа, при технологических параметрах, взятых за пределами предлагаемых диапазонов.

Пример 4. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После расплавления смеси солей проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 700°С, времени выдержки 15 мин и перемешивании со скоростью 50 об/мин. После проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия не обеспечивают качественный переход неодима в лигатуру.

Пример 5. Предварительно в реакционный тигель загружают 27,05 гр. чушкового магния и расплавляют его в плавильной печи, после чего вводят перемешанную смесь солей состава: фторид неодима 15 гр., хлорид калия 31,5 гр., хлорид натрия 31,5 гр., хлорид кальция 27 гр., хлорид магния 0,75 гр., фторид кальция 5 гр. После ввода смеси фторидов и хлоридов проводят перемешивание расплава. После расплавления смеси солей проводят перемешивание расплава. Проведение полной обменной реакции расплавленных солей и магния осуществляют при температуре 800°С, времени выдержки 45 мин и перемешивании со скоростью 400 об/мин после проведения полной обменной реакции полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.

Технологические условия обеспечивают качественный переход неодима в лигатуру, однако плавка характеризуется высокими безвозвратными потерями магния и неодима.

Таким образом, как показано в описании, в предлагаемом техническом решении созданы технологические условия для восстановления неодима из его фторида с получением слитков лигатуры магний-неодим с мелкозернистой структурой.

Способ получения лигатуры магний-неодим, включающий введение в жидкий магний смеси солей, состоящей из фторида неодима и флюса, расплавление указанной смеси, перемешивание жидкого магния с расплавом солей, отстаивание и разливку, отличающийся тем, что в качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорида магния и фторида кальция, перемешивание проводят со скоростью от 150 до 350 об/мин при температуре от 710 до 770°С и времени выдержки от 20 до 40 мин с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав.
Источник поступления информации: Роспатент

Showing 31-40 of 204 items.
25.08.2017
№217.015.bd7d

Способ получения экологически чистого дизельного топлива

Изобретение описывает способ получения экологически чистого дизельного топлива (ЭЧДТ) путем смешения исходного дизельного топлива с биодобавкой - продуктом переэтерификации растительного масла нормальным бутиловым спиртом в присутствии концентрированной серной кислоты, характеризующийся тем,...
Тип: Изобретение
Номер охранного документа: 0002616297
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bda4

Способ образования центров окраски в алмазе

Изобретение относится к области создания материалов для пассивных и активных элементов устройств фотоники, квантовой электроники и оптики. Способ образования центров окраски в алмазе включает облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 10 см...
Тип: Изобретение
Номер охранного документа: 0002616350
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.be0e

Способ извлечения солей гольмия (iii) из водных растворов

Изобретение относится к способу извлечения солей гольмия (III) из бедного или техногенного сырья с помощью метода жидкостной экстракции. Способ извлечения солей гольмия (III) включает жидкостную экстракцию с использованием в качестве экстрагента изооктилового спирта. Сольват в виде...
Тип: Изобретение
Номер охранного документа: 0002616748
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be46

Кислотный состав для обработки призабойной зоны пласта терригенного коллектора с повышенной карбонатностью

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для кислотной обработки призабойной зоны терригенного пласта с повышенной карбонатностью. Состав включает 36%-ную соляную кислоту, ингибитор коррозии ИКУ-118, пресную воду, 86,5%-ную муравьиную кислоту,...
Тип: Изобретение
Номер охранного документа: 0002616923
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be82

Стабилометр

Изобретение относится к испытательной технике, а именно к механическим испытаниям горных пород при объемном сжатии в режиме жесткого нагружения, обеспечивающем контроль процесса деформирования образцов за пределом прочности. Стабилометр для испытания образцов горных пород содержит камеру для...
Тип: Изобретение
Номер охранного документа: 0002616946
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bec0

Метчик для нарезания точных резьб

Метчик включает заборный участок, калибрующий участок и ведущий участок, зубья которого выполнены бочкообразной формы. Радиусы скругления ρ режущих кромок заборного участка выполняют в пределах от 25 до 30 мкм, радиусы скругления ρ режущих кромок калибрующего участка в пределах от 15 до 20 мкм,...
Тип: Изобретение
Номер охранного документа: 0002616755
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bec8

Кислотный состав для обработки низкопроницаемых высокотемпературных пластов с повышенным содержанием глин и карбонатов

Изобретение относится к нефтедобывающей промышленности. Технический результат - интенсификации притока нефти, увеличение проницаемости пласта, замедление скорости реакции с породой состава для обработки пласта и исключение образования кремниевых кислот при реакции с глинами при высокой...
Тип: Изобретение
Номер охранного документа: 0002616949
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bfa5

Способ оценки прочности элементов сварного корпуса подводного аппарата

Использование: для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы на основании акустического метода неразрушающего контроля. Сущность изобретения заключается в том, что осуществляют нагружение исследуемого объекта, регистрацию числа импульсов...
Тип: Изобретение
Номер охранного документа: 0002617195
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c051

Способ извлечения ультрадисперсных алмазов из импактитов

Изобретение относится к области обогащения полезных ископаемых, в частности к извлечению ультрадисперсных алмазов из сырья импактного происхождения, и может быть использовано при переработке кимберлитовых руд. Способ извлечения ультрадисперсных алмазов из импактитов включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002616698
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.ca04

Устройство компенсации высших гармоник, адаптированное к электроприводу переменного тока

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам компенсации высших гармоник в электрических сетях. Технический результат - снижение гармонических составляющих - достигается тем, что в устройстве компенсации высших гармоник, адаптированном к электроприводу...
Тип: Изобретение
Номер охранного документа: 0002619919
Дата охранного документа: 19.05.2017
Showing 31-40 of 48 items.
09.06.2018
№218.016.5a58

Способ получения вяжущего

Изобретение относится к способам производства строительных материалов и может быть использовано для получения вяжущих, в частности цементов, на основе гидроалюминатов кальция. Техническим результатом предлагаемого изобретения является сокращение сроков схватывания алюминатного вяжущего и...
Тип: Изобретение
Номер охранного документа: 0002655556
Дата охранного документа: 28.05.2018
11.10.2018
№218.016.8fcf

Способ сгущения сапонитовой суспензии

Изобретение может быть использовано в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов. Способ сгущения сапонитовой суспензии включает осаждение частиц для последующего...
Тип: Изобретение
Номер охранного документа: 0002669272
Дата охранного документа: 09.10.2018
26.12.2018
№218.016.aad0

Способ получения лигатуры магний-цинк-иттрий

Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и в производстве сталей и чугунов. Способ получения лигатуры...
Тип: Изобретение
Номер охранного документа: 0002675709
Дата охранного документа: 24.12.2018
26.12.2018
№218.016.ab71

Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента

Изобретение может быть использовано в области горнорудной промышленности при обогащении алмазоносных кимберлитовых пород. Способ включает извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания. Пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л...
Тип: Изобретение
Номер охранного документа: 0002675871
Дата охранного документа: 25.12.2018
01.03.2019
№219.016.cdc4

Способ получения алюминиевых сплавов для прокатки фольги

Изобретение относится к металлургии. Способ включает введение расчетного количества кристаллического кремния в алюминиевый расплав в электролизере через подготовленные «окна» в корке электролизной ванны. Кристаллический кремний вводят в виде мелких и пылевидных фракций размером до 20 мм,...
Тип: Изобретение
Номер охранного документа: 0002418084
Дата охранного документа: 10.05.2011
01.03.2019
№219.016.cde1

Сплав на основе алюминия для получения фольги

Изобретение относится к металлургии сплавов на основе алюминия системы Al-Fe-Si, предназначенных для изготовления фольги, используемой в качестве упаковки в пищевой промышленности, медицине, химической промышленности. Сплав включает следующие компоненты, мас.%: железо 0,95-1,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002415191
Дата охранного документа: 27.03.2011
17.03.2019
№219.016.e2d9

Лигатура для жаропрочных магниевых сплавов

Изобретение относится к литейному производству и может быть использовано при получении жаропрочных сплавов на основе магния марок МЛ10, МЛ19 и в системах: Mg-Y-Sm-Zn-Zr, Mg-Sn-Zn-Y, Mg-Gd-Y-Zn-Mn, Mg-Y-Zn-Zr, Mg-Gd-Y-Zn-Zr. Лигатура содержит, мас. %: цинк 10-40, иттрий 15-40, магний -...
Тип: Изобретение
Номер охранного документа: 0002682191
Дата охранного документа: 15.03.2019
23.03.2019
№219.016.ec98

Способ изготовления катодного блока для алюминиевого электролизера

Изобретение относится к изготовлению катодного блока для алюминиевого электролизера. Способ включает подготовку исходных материалов, формование заготовки, ее карбонизацию, графитацию и охлаждение с получением катодного блока. Подготовка исходных материалов включает прокалку антрацита и...
Тип: Изобретение
Номер охранного документа: 0002682732
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ed95

Способ получения кальцийалюмосиликатного неорганического коагулянта

Изобретение относится к технологии получения неорганического коагулянта, используемого для очистки сточных вод. Способ получения кальцийалюмосиликатного неорганического коагулянта включает смешение кальцийсодержащего материала с кремнеземсодержащим минералом и последующую термообработку....
Тип: Изобретение
Номер охранного документа: 0002683082
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.ff1b

Способ получения порошка диборида титана

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения порошка диборида титана включает приготовление мокрой реакционной смеси путем гидролиза тетрахлорида титана в дистиллированной воде при постоянном перемешивании, с получением гидратированного...
Тип: Изобретение
Номер охранного документа: 0002684381
Дата охранного документа: 08.04.2019
+ добавить свой РИД