×
12.08.2019
219.017.beaa

Результат интеллектуальной деятельности: КОМБИНИРОВАННЫЙ ВЕКТОРНЫЙ ПРИЕМНИК

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидроакустике, а именно к конструкции приемников для проведения векторно-скалярных измерений параметров гидроакустических полей океана. Приемник содержит герметичный корпус с инерционной массой, расположенной в центре, электронную систему формирования сигналов, пропорциональных акустическому давлению и трем проекциям вектора колебательного ускорения, и три измерительных канала, каждый из которых состоит из двух чувствительных элементов, выполненных на основе пьезокерамики и установленных навстречу друг другу вдоль осей ортогональной системы координат. Корпус снабжен глухими отверстиями, выполненными с внешней стороны корпуса напротив каждого чувствительного элемента и оборудованными уплотненным поршнем, днище которого опирается на дно отверстия, на которое с другой стороны опирается конец чувствительного элемента, второй конец которого опирается на инерционную массу. Технический результат - повышение чувствительности приемника и улучшение формы характеристики направленности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к гидроакустике, а именно к комбинированным акустическим приемникам, широко применяющимся для проведения векторно-скалярных измерений параметров гидроакустических полей океана.

Известен комбинированный акустический приемник, содержащий два приемника градиента давления, выполненные в виде полусфер из пьезокерамики, и приемник давления, выполненный из двух пьезокерамических дисков, помещенных в звукопрозрачный уретановый корпус (п. РФ №2403684 С1). Однако, приемник является двухканальным и не позволяет измерять третью проекцию вектора колебательной скорости на оси системы координат.Кроме этого, очень близкое расположение друг к другу приемников градиента давления в качестве измерителей колебательной скорости предъявляет очень жесткие требования к их идентичности и чувствительности, особенно на низких частотах.

Известен комбинированный гидроакустический приемник, корпус которого содержит груз, расположенный в центре, гидрофонный канал, три векторных канала, установленных центрально-симметрично между корпусом и грузом, электронный блок преобразования акустических колебаний, дистанционные системы электропитания и передачи информации, а также неконтактную магнитную систему стабилизации корпуса приемника, состоящую из жесткого каркаса, по периметру которого размещены датчики положения корпуса и соединенные с электронной системой регулирования тока электромагниты, напротив которых внутри корпуса установлены постоянные магниты (п. РФ №2577421 С1). Приемник отличается очень сложной конструкцией, а гидрофонный канал выполнен на отдельном чувствительном элементе, что дополнительно увеличивает сложность конструкции.

Наиболее близким к заявляемому является цифровой комбинированный векторный приемник с синтезированными каналами, содержащий корпус с инерционной массой, расположенной в центре корпуса, электронную систему регистрации сигналов, пропорциональных акустическому давлению и трем проекциям вектора колебательного ускорения, и три измерительных канала, каждый из которых состоит из двух чувствительных элементов, выполненных на основе пьезокерамики и установленных навстречу друг другу, при этом чувствительные элементы одним концом фиксируют инерционную массу, а другим опираются на корпус (п.РФ №2509320 С1). Под воздействием акустического поля силы давления на корпус вызывают его деформации. Часть деформирующего усилия передается на чувствительные элементы, опирающиеся на корпус, и при этом на всех чувствительных элементах возникнет деформация одного знака. Колебательное движение корпуса вызывает возникновение сил инерции, нагружающих чувствительные элементы, и создает деформации разных знаков у чувствительных элементов, лежащих на одной оси по разные стороны инерционной массы. Возникающие при этих деформациях чувствительных элементов сигналы оцифровываются и затем с помощью известных математических преобразований получают сигналы, пропорциональные давлению акустического поля и проекциям вектора колебательного ускорения.

Однако, если корпус выполнен из материала с большим модулем упругости, деформации корпуса, вызывающие сигналы датчиков, пропорциональные акустическому давлению, будут малы, поэтому для корректной работы известного приемника предполагается использование материалов с малым модулем упругости. Но в таком случае снижается резонансная частота корпуса, что нежелательно для векторного приемника, так как резонанс корпуса даже близкий к рабочему диапазону частот приводит к нарушению формы характеристики направленности, которая из дипольной вырождается в круговую. Из-за этого приходится либо мириться с плохой формой характеристики направленности, либо специально ограничивать рабочий диапазон меньшими значениями верхней частоты. Данный эффект, в частности, проявляется в том, что для приемника с объявленной верхней рабочей частотой порядка 1 кГц, при резонансной частоте корпуса в диапазоне 15-20 кГц, коэффициент деления (отношение максимума характеристики направленности к минимуму характеристики направленности) существенно ухудшается с ростом частоты: на низких частотах (порядка 200-300 Гц) коэффициент деления может достигать -40 дБ, а на частотах порядка 900 Гц он составляет уже -(15-20) дБ.

Таким образом стоит проблема улучшения рабочих характеристик комбинированного векторного приемника, для чего заявитель предлагает частично отобрать у корпуса функцию передачи давления на чувствительные элементы, что позволит повысить чувствительность приемника и улучшить форму характеристики направленности.

Для этого приемник, содержащий герметичный корпус с инерционной массой, расположенной в центре, электронную систему формирования сигналов, пропорциональных акустическому давлению и трем проекциям вектора колебательного ускорения, и три измерительных канала, каждый из которых состоит из двух чувствительных элементов, выполненных на основе пьезокерамики и установленных навстречу друг другу вдоль осей ортогональной системы координат, дополнительно снабжают глухими отверстиями, выполненными с внешней стороны корпуса напротив каждого чувствительного элемента и оборудованными уплотненным поршнем, при этом чувствительные элементы одним концом фиксируют инерционную массу, а другим опираются на дно отверстия, на которое с другой стороны опирается днище поршня.

Заявляемая конструкция приемника за счет предложенной передачи сил внешнего давления на чувствительные элементы и уменьшения вредного влияния собственного резонанса корпуса приемника на характеристику направленности позволяет повысить чувствительность приемника и улучшить форму характеристики направленности

Силы внешнего давления вызывают деформацию корпуса, который, в свою очередь, деформирует чувствительные элементы. Чем меньше жесткость корпуса, тем больше деформация корпуса при воздействии давления и тем сильнее деформируются чувствительные элементы, проявляя, таким образом, хорошую чувствительность, но при этом снижается резонансная частота корпуса. Введение дополнительно в конструкцию приемника поршня для каждого чувствительного элемента позволяет избавится от необходимости иметь корпус малой жесткости и дает возможность использовать жесткий корпус с высокой резонансной частотой, а также обеспечивает хорошую передачу сил давления на чувствительные элементы, не теряя при этом чувствительность. Помимо этого, данное техническое решение позволяет использовать для корпусов более широкий спектр материалов и сделать корпус достаточно прочным для применения на большой глубине.

На фиг. приведена схема заявляемого устройства, где 1 - корпус с отверстиями, 2 - поршень; 3 - чувствительный элемент, 4 - уплотнительное кольцо поршня; 5 - инерционная масса; 6 - дно отверстия.

При этом конструктивно дно отверстия может быть выполнено съемным и изготовленным из иного материала, чем корпус, и закреплено в корпусе любым должным образом, например на винтах или с помощью клея, с выдерживанием размеров, необходимых для фиксации чувствительных элементов, опирающихся на инерционную массу.

Работает устройство следующим образом. Когда приемник находится в акустическом поле, его корпус (1) соколеблется с водной средой, при этом на инерционной массе (5) возникают силы инерции, которые воспринимаются чувствительными элементами (3). Дно (6) отверстия, являясь одновременно частью корпуса, за счет малой толщины обладает небольшой жесткостью для передачи на чувствительные элементы (3) силы акустического давления, воздействующей на поршни (2) с внешней стороны. Толщину дна отверстия подбирают с учетом эксплуатационных требований по заданным частотному диапазону, чувствительности и рабочей глубине погружения.

Таким образом, на всех шести чувствительных элементах присутствуют сигналы, пропорциональные акустическому давлению, и на каждых двух чувствительных элементах, расположенных вдоль одной оси координат, присутствуют сигналы, пропорциональные проекции вектора колебательного ускорения на соответствующую ось. Для выделения из полученных сигналов сигнала, пропорционального давлению, суммируют сигналы со всех шести чувствительных элементов. А для выделения сигналов, пропорциональных компонентам колебательного ускорения, попарно вычитают один из другого сигналы чувствительных элементов, расположенных вдоль одной оси, при этом противофазные сигналы проекции вектора колебательного ускорения суммируются, а синфазные сигналы, пропорциональные давлению взаимно вычитаются.

Реализовать электронную систему алгоритма расчета формирования сигналов можно различными способами, например, как описано в прототипе, где электронная система формирования сигналов, пропорциональных давлению в акустической волне и компонентам вектора колебательного ускорения, выполнена с использованием микропроцессорного устройства: каждый чувствительный элемент подключен к входу своего АЦП, выходные коды которого подаются в микропроцессорное устройство; или, например, подавая сигналы всех чувствительных элементов на аналоговый сумматор («Р»), где противофазные сигналы, пропорциональные проекциям вектора колебательного ускорения, будут взаимно вычитаться, а синфазные сигналы, вызванные давлением акустического поля будут суммироваться, образуя на выходе сумматора («Р») сигнал, пропорциональный акустическому давлению. Для получения сигналов, пропорциональных проекциям колебательного ускорения попарно суммируют сигналы чувствительных элементов, принадлежащих одной оси с помощью трех других сумматоров, например, «Vx», «Vy», «Vz», причем один из сигналов в парах инвертирован, и тогда на выходах сумматоров «V» получают сигналы, пропорциональные проекциям вектора колебательного ускорения, при этом сигналы, пропорциональные давлению будут взаимно вычитаться.

Заявляемый приемник может быть изготовлен с использованием стандартных конструкторских приемов и элементов. Например, корпус и поршни могут быть изготовлены из пластмассы, подходящей по физико-химическим характеристикам, например, поликарбоната, или из металлического сплава, при этом толщина стенки корпуса выбирается конструктором исходя из заданной резонансной частоты приемника, что может привести к достаточно жесткому корпусу, но так как передача акустического давления на чувствительные элементы осуществляется через поршни, высокая жесткость не повлияет на характеристики чувствительности и уменьшит вредное влияние собственного резонанса корпуса приемника на характеристику направленности за счет того, что жесткость корпуса и, соответственно, частота его собственного резонанса, может быть повышена без ущерба для передачи сил внешнего давления на чувствительные элементы за счет предлагаемой конструкции. Помимо этого, данное техническое решение позволяет сделать корпус достаточно прочным для применения на большой глубине.


КОМБИНИРОВАННЫЙ ВЕКТОРНЫЙ ПРИЕМНИК
КОМБИНИРОВАННЫЙ ВЕКТОРНЫЙ ПРИЕМНИК
Источник поступления информации: Роспатент

Showing 31-40 of 58 items.
26.08.2017
№217.015.df60

Лазерно-интерференционный измеритель градиента давления в жидкости

Лазерно-интерференционный измеритель градиента давления в жидкости относится к области измерительной техники и может быть использован в гидроакустике для измерения градиента давления гидросферы. Устройство представляет собой цилиндрический корпус из нержавеющего материала, внутри которого...
Тип: Изобретение
Номер охранного документа: 0002625000
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e0a7

Способ контроля физиологических параметров дыхательной системы водолазов

Изобретение относится к медицине, а именно к оценке состояния органов дыхания, и может быть использовано для контроля физиологического состояния пловцов с подводным аппаратом открытого цикла. Зарегистрированные шумы дыхания водолаза раздельно фильтруют для выделения шумов вдоха в полосе частот...
Тип: Изобретение
Номер охранного документа: 0002625274
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.ea70

Подвесной поверхностный привод судна

Изобретение относится к судостроению и может быть применено для использования на различных судах, предназначенных для эксплуатации с подвесными моторами. Подвесной привод судна содержит блок двигателя с трансмиссией, которая включает редуктор двигателя и угловой редуктор привода гребного винта...
Тип: Изобретение
Номер охранного документа: 0002628039
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ec52

Способ электромагнитной разведки источников углеводородного сырья на глубоком шельфе морских акваторий

Изобретение относится к геофизическим методам разведки полезных ископаемых, а именно к морской электромагнитной разведке источников (залежей) углеводородного сырья, например нефти, газа, гидратов метана и т.д. Способ применим для прилегающих к материковому склону районов морского шельфа с...
Тип: Изобретение
Номер охранного документа: 0002627670
Дата охранного документа: 09.08.2017
29.12.2017
№217.015.fd0d

Способ передачи дискретной информации по каналу связи с многолучевым распространением

Изобретение относится к передаче цифровой информации по каналу связи с многолучевым распространением и может быть использовано в системах связи для обеспечения правильного приема переданной информации. Техническим результатом заявляемого решения является повышение вероятности правильного приема...
Тип: Изобретение
Номер охранного документа: 0002638760
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.07e9

Способ получения карты мощности антропогенных карбонатных отложений археологического памятника типа "раковинная куча"

Изобретение относится к геофизике и археологии и может быть использовано для выявления внутренней структуры археологических объектов, представляющих собой слои ограниченного простирания и мощности, сложенные раковинами моллюсков. Для выделения границ слоя раковин в культурных отложениях на...
Тип: Изобретение
Номер охранного документа: 0002631527
Дата охранного документа: 25.09.2017
10.05.2018
№218.016.3a22

Способ передачи дискретной информации по каналу связи с многолучевым распространением

Изобретение относится к передаче цифровой информации по каналу связи с многолучевым распространением и может быть использовано в системах связи для обеспечения правильного приема переданной информации. Технический результат – повышение устойчивости канала передачи дискретных сообщений...
Тип: Изобретение
Номер охранного документа: 0002647656
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4d4b

Флуориметр с многоканальной системой возбуждения на светодиодах

Изобретение относится к экологии, лимнологии, океанологии и может быть использовано в качестве устройства для проведения in situ исследований антропогенной загрязненности природных акваторий с морской и пресной водой. Флуориметр включает генератор опорных сигналов, выполненный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002652528
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.5216

Лазерно-интерференционный донный сейсмограф

Изобретение относится к области геофизики и может быть использовано для измерения микродеформаций земной коры на дне морей и океанов и изучения пространственно-временной структуры геофизических полей инфразвукового и звукового диапазонов. Лазерно-интерференционный донный сейсмограф выполнен...
Тип: Изобретение
Номер охранного документа: 0002653099
Дата охранного документа: 07.05.2018
29.08.2018
№218.016.80d6

Способ определения генезиса морских осадочных отложений

Изобретение относится к геологии и может быть использовано при определении генезиса морских осадочных отложений, а именно мелкозернистых песчаников, алевролитов, алевроаргиллитов и аргиллитов. Для этого помещают исследуемые породы в камнехранилище (изолированное от атмосферных осадков...
Тип: Изобретение
Номер охранного документа: 0002665152
Дата охранного документа: 28.08.2018
Showing 11-12 of 12 items.
19.05.2023
№223.018.64cf

Автономный регистратор геофизических параметров

Изобретение относится к геофизике, а именно к устройствам для регистрации различных геофизических параметров, и может быть использовано в океанологических исследованиях. Автономный регистратор представляет собой герметичный водонепроницаемый корпус, снабженный съемной крышкой в виде оптически...
Тип: Изобретение
Номер охранного документа: 0002735003
Дата охранного документа: 27.10.2020
19.05.2023
№223.018.64d8

Компенсатор температурной погрешности лазерно-интерференционного измерителя

Компенсатор температурной погрешности лазерно-интерференционного измерителя относится к измерительной технике и может применяться для повышения точности лазерно-интерференционных измерителей, применяемых в геофизике. Компенсатор включает датчик температуры окружающей среды соединенный с...
Тип: Изобретение
Номер охранного документа: 0002738597
Дата охранного документа: 14.12.2020
+ добавить свой РИД