×
10.08.2019
219.017.bdf2

Результат интеллектуальной деятельности: Аэродинамическая труба

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло. Система управления эжектором, выполненная с возможностью включать стволы независимо друг от друга, содержит дроссели и затворы, перфорация в сопле эжектора выполнена в виде продольных щелей. Технический результат заключается в снижении расходов высоконапорного газа на менее напряженных режимах работы аэродинамической трубы. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний.

Известны аэродинамические трубы, в которых перепад давлений на рабочем сопле трубы создается с помощью эжектора либо компрессора и эжектора одновременно. (См. И. Гошек. «Аэродинамика больших скоростей», Изд. иностранной литературы. М. 1954). Контур гиперзвуковой аэродинамической трубы (источник газа, подогреватель, сопло, рабочая часть, диффузор и иногда охладитель потока) обычно заканчивается входом в выхлопную систему (входом в вакуумную емкость, эксгаустер или эжектор).

Эжекторные аэродинамические трубы (АДТ) имеют ряд преимуществ перед трубами с вакуумной емкостью и эксгаустером, особенно при испытаниях моделей с работающими двигателями. Эжектор должен обеспечивать реализацию всех режимов и одновременно не завышать стоимость испытаний, поскольку он является основным источником энергозатрат при них. Мощный эжектор позволяет реализовать в АДТ широкий диапазон чисел Маха, Рейнольдса и скоростных напоров, а также увеличить размер испытываемых моделей. С его помощью осуществляются мягкий запуск трубы и мягкий сход с режима, в результате чего не разрушаются (при прохождении скачков уплотнения) испытываемые модели, модельные державки, модельные весы и другое оборудование.

Известна аэродинамическая труба включающая сопло, рабочую часть, диффузор и многоступенчатый эжектор, принятая за прототип (см. Г.С. Бюшгенс, Е.Л. Бедржицкий. ЦАГИ - центр авиационной науки. Москва, «Наука», 1993, стр. 218).

Недостатком данного технического решения является повышенная стоимость испытаний из-за большого расхода сжатого воздуха из газгольдеров при работе в широком диапазоне режимов.

Необходимый расход сжатого воздуха через эжектор определяется его максимальной потребной степенью сжатия и поперечным размером камеры смешения. Он должен быть по экономическим соображениям близок к размеру горла диффузора трубы. Однако для разных режимов гиперзвуковой аэродинамической трубы размер горла диффузора меняется порой в несколько раз. Эжектор, выбранный для реализации наиболее напряженных режимов работы трубы, на остальных режимах оказывается переразмеренным и неэкономичным. Требования к эжектору становятся еще более противоречивыми при наличии охладителя рабочего потока, значительно уменьшающего объемный расход отсасываемого газа перед эжектором за счет снижения его температуры. Для реализации рабочих режимов в гиперзвуковых аэродинамических трубах применяются, как правило, многоступенчатые эжекторы, обеспечивающие необходимую большую (10-50) степень сжатия. Фактически требуется регулируемый по поперечному размеру многоступенчатый эжектор, но регулирование по поперечному размеру такого эжектора слишком сложная и технически трудноразрешимая задача.

Задачей и техническим результатом настоящего изобретения является создание аэродинамической трубы с эжектором, позволяющим экономить сжатый воздух на всех менее напряженных режимах, а, следовательно, минимизировать стоимость проведения испытаний.

Решение задачи и технический результат достигаются тем, что в аэродинамической трубе, включающей эжектор и систему его управления, эжектор состоит из нескольких стволов, из которых как минимум один содержит перфорированное сопло, а система управления выполнена с возможностью включать отдельно стволы независимо друг от друга. Кроме того, перфорация в сопле эжектора выполнена в виде продольных щелей, а система управления эжектором содержит дроссели и затворы в трассах подвода высоконапорного и низконапорного газов

Фиг. 1 Схема гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Фиг. 2 Схема перфорированного продольными щелями сопла эжектора.

Фиг. 3 Характеристики трехствольного эжектора.

Фиг. 4 Общий вид гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Схема предлагаемой аэродинамической трубы приведена на фиг. 1. Труба содержит воздухоподогреватель с форкамерой 1, аэродинамическое сопло 2, модель летательного аппарата 3, рабочую камеру 4, сверхзвуковой диффузор 5, внутренний диффузор 6, дозвуковой диффузор трубы 7, воздухоохладитель 8, многоствольный эжектор 9. В состав многоствольного эжектора 9 входят стволы (в нашем случае 3 ствола) с подводом сжатого воздуха 10, диффузор 11, шахта шумоглушения 12, затвор 13, дроссель высоконапорного газа 14. Каждый ствол эжектора содержит перфорированное продольными щелями сопло 15, обеспечивающее стволу степень сжатия многоступенчатого эжектора. Перфорированное продольными щелями сопло изображено на фиг. 2.

Двуединая задача реализации всех режимов работы аэродинамической трубы при минимальной стоимости испытаний в предложении решается устройством эжектора АДТ в виде ряда параллельных стволов с перфорированными соплами. Стволы в нужном количестве подключаются для каждого пуска в различных комбинациях. Для реализации различных комбинаций стволы имеют индивидуальный подвод высоконапорного газа 14 и затворы 13 для предотвращения натекания атмосферного воздуха в трубу через неработающий ствол (когда в него не подается высоконапорный газ). В качестве стволов применен модернизированный одноступенчатый эжектор с перфорированным продольными щелями соплом, позволяющий получать большие степени сжатия (примерно 10-50), сравнимые со степенями сжатия многоступенчатых эжекторов

На фиг. 3 приведены характеристики трехствольного эжектора, состоящего из одного большого и двух малых эжекторов, имеющих перфорированные продольными щелями сопла по фиг. 2. Характеристики (зависимости расхода отсасываемого газа от его абсолютного давления) рассчитаны при работе одного малого эжектора - линия 1, одного большого эжектора - линия 2, одновременной работе большого и одного малого эжекторов - линия 3 и одновременной работе большого и двух малых эжекторов - линия 4. При этом на линии 2 расход сжатого высоконапорного газа в два раза больше, чем на линии 1, на линии 3 - в 3, а на линии 4 - в 4 раза больше, чем на линии 1. Такая многоствольная конструкция эжектора позволяет рационально и экономично вести испытания в аэродинамической трубе. Стволы в нужном количестве (один, два или три) подключаются для каждого пуска трубы в различных комбинациях.

Как видим из фиг. 3, если бы эжектор был одноствольным и рассчитан на максимальный режим и максимальный расход отсасываемого и высоконапорного газа (см. линия 4), то на ненапряженных режимах работы трубы перерасход сжатого воздуха мог бы составлять 100-300%. Сравнение проведено с минимально необходимыми затратами сжатого воздуха на работу отсасывающего устройства аэродинамической трубы (линии 3, 2 и 1 на фиг. 3).

На фиг. 4 приведен общий вид разрабатываемой в настоящее время аэродинамической трубы с трехствольным эжектором, позволяющим в 2-3 раза снизить расходы высоконапорного газа на менее напряженных режимах работы аэродинамической трубы.


Аэродинамическая труба
Аэродинамическая труба
Аэродинамическая труба
Источник поступления информации: Роспатент

Showing 131-140 of 255 items.
29.12.2017
№217.015.f657

Аэродинамический руль

Изобретение относится к области авиационной техники. Аэродинамический руль состоит из переднего и заднего звеньев, имеющих общую ось вращения. Заднее звено выполнено с осевой компенсацией. Угол отклонения переднего звена пропорционален углу отклонения заднего звена с коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002637150
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.04ee

Устройство для измерения размеров капель в водовоздушных потоках

Устройство для измерения размеров капель воды водовоздушных потоков содержит корпус, державку с кассетой со стеклами, блок управления, подвижной цилиндрический кожух, закрывающий кассету и приводимый в движение микроэлектродвигателем, установленным в корпусе. В кожухе выполнены два...
Тип: Изобретение
Номер охранного документа: 0002630853
Дата охранного документа: 13.09.2017
20.01.2018
№218.016.1604

Способ сборки болтовых соединений силовых конструкций летательных аппаратов

Изобретение относится к авиастроению, в частности к способам сборки силовых агрегатов и элементов конструкции из алюминиевых сплавов с помощью болтов. Способ заключается в том, что болт в отверстие соединяемых деталей устанавливают по скользящей посадке, головку болта вместе с соединяемыми...
Тип: Изобретение
Номер охранного документа: 0002635304
Дата охранного документа: 09.11.2017
04.04.2018
№218.016.305c

Люминесцентное полимерное покрытие для обнаружения повреждений конструкции

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций. Люминесцентное покрытие содержит первый по направлению от конструкции индикаторный слой с люминофором и...
Тип: Изобретение
Номер охранного документа: 0002644917
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.328c

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана и консолей, выполненных с удлинением λ=7-11, сужением η=3-4.5 и стреловидностью χ=28-35°. Передняя и задняя кромки крыла при виде сверху прямолинейные. Задняя кромка выполнена с наплывом. Имеется...
Тип: Изобретение
Номер охранного документа: 0002645557
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.32d9

Способ обнаружения ударных повреждений конструкции

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр...
Тип: Изобретение
Номер охранного документа: 0002645431
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.44ab

Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно в аэродинамических трубах больших дозвуковых скоростей для более детального изучения картины обтекания моделей крыльевых профилей. Способ включает освещение области обтекания модели профиля...
Тип: Изобретение
Номер охранного документа: 0002650046
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4d36

Лонжерон лопасти аэродинамической модели воздушного винта и способ его изготовления

Изобретение относится к конструкциям и способам изготовления лопастей воздушных винтов. Лонжерон лопасти аэродинамической модели воздушного винта из композиционных полимерных материалов состоит из верхней и нижней профилированных полок, соединенных заполнителем. Заполнитель состоит из...
Тип: Изобретение
Номер охранного документа: 0002652545
Дата охранного документа: 26.04.2018
29.05.2018
№218.016.5275

Устройство для испытания панелей

Изобретение относится к области испытаний летательных аппаратов на прочность при сложном двухкомпонентном нагружении, в частности к испытаниям подкрепленных панелей силового каркаса планера самолета, работающих одновременно на сжатие и сдвиг, для определения фактической прочности и...
Тип: Изобретение
Номер охранного документа: 0002653774
Дата охранного документа: 14.05.2018
Showing 1-3 of 3 items.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
+ добавить свой РИД