×
10.08.2019
219.017.bd88

Результат интеллектуальной деятельности: Кольцевой объёмный оптический резонатор

Вид РИД

Изобретение

Аннотация: Изобретение к лазерной технике. Кольцевой объемный оптический резонатор содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость с впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль поверхностей полости и образующих оптическую ось в виде замкнутой ломаной линии, выпускное отверстие для излучения. Замкнутая полость выполнена между наружной и внутренней стенками в виде тороидальных коаксиальных поверхностей или наружной и внутренней стенками в виде коаксиальных многогранников. Зеркала системы установлены с нечетным количеством отражающих граней зеркал и расположены относительно друг друга с образованием верхнего и нижнего односторонних световодов с конечными глухими зеркалами, направленными на выпускное отверстие для излучения. Технический результат заключается в обеспечении возможности получения резонатора наибольшего объема с максимальным коэффициентом усиления и минимальным весом. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области квантовой технологии, в частности, к устройствам лазеров и может быть использовано при получении излучений в проточных газовых лазерах смесевого типа, конкретнее, в смесевом газодинамическом лазере.

Активная среда (рабочий газ) с инверсией населенностей обладает способностью усиливать излучаемую световую волну, коэффициент усиления, которой зависит от пути, проходимого волной в этой среде. Чтобы увеличить этот путь, активная среда помещается между двумя параллельными отражателями (это могут быть плоские зеркала, сферические, комбинации плоских и сферических и др.), причем одно из зеркал полупрозрачное, другое непрозрачное. Такая система отражателей является резонатором. Волна, распространяющаяся вдоль его оси, попадает в наиболее благоприятные условия. Усиливаясь, она достигнет зеркала, отразится от него и пойдет в обратном направлении, продолжая усиливаться, затем отразится от второго зеркала и т.д. Если усиление больше потерь, испытываемых волной при отражении, то с каждым проходом волна будет усиливаться, пока плотность энергии в волне не достигнет некоторого предельного значения.

Рост плотности энергии прекращается, когда выделяемая в результате вынужденных переходов энергия, не может компенсироваться энергией, затрачиваемой на возбуждение атомов. В результате между зеркалами устанавливается стоячая волна, а сквозь полупрозрачное зеркало выходит наружу поток когерентного излучения, которое характеризуется высокой направленностью и монохроматичностью.

Основным конструктивным затруднением при создании всех существующих газодинамических лазеров является ограниченный рабочий объем отражателя (резонатора). Внутри этого объема невозможно разместить достаточно большое количество активной среды. В результате, мощность современных лазеров не превышает несколько десятков кВт. Кроме того, особенности создания инверсии населенностей в газодинамическом лазере, приводят к существенному несовпадению рабочего объема резонатора с объемом активной среды. В результате значительная часть активной среды не принимает участия в формировании лазерного луча и КПД газодинамического лазера не превышает 1%. Впрочем, если учитывать энергию лазерных квантов, которые уходят через открытые боковые поверхности резонатора, коэффициент преобразования тепловой энергии в энергию излучения оказывается значительно выше. Небольшая мощность и низкий КПД преобразования тепловой энергии в энергию излучения, могут значительно осложнить задачу создания лазерных систем отвода тепла.

Наиболее близким по технической сущности и достигаемому результату является, известный кольцевой объемный оптический резонатор, содержащий ограниченную наружной и внутренней стенками кольцевую замкнутую полость с, по меньшей мере, одним впускным отверстием для активной среды и отводным отверстием, систему зеркал, установленных вдоль коаксиальных поверхностей полости, образующих оптическую ось в виде замкнутой ломаной линии и, по меньшей мере, одно выпускное отверстие для излучения фотонов.

/RU 2388123 С2 МПК H01S 3/05 Опубликовано: 27.04.2010/

Основным недостатком известной конструкции кольцевого резонатора является то, что рабочие объемы кольцевого объемного оптического резонатора и площади внутренней поверхности недостаточны для увеличения мощности резонатора до пределов его практической применимости, без увеличения рабочей длины резонатора, а следовательно, и его массовых характеристик.

Задачей изобретения - разработка кольцевого объемного оптического резонатора интегрированного в конструкцию эксплуатируемого и перспективного газотурбинного двигателя в составе бортового авиационного лазерного комплекса.

Ожидаемый технический результат - получение оптимальной внутренней отражающей поверхности с ориентированными отражающими гранями и наибольшего объема кольцевого оптического резонатора с максимальным коэффициентом усиления и минимальным весом и с возможностью интегрирования его в конструкцию газотурбинного двигателя.

Ожидаемый технический результат достигается тем, что в известном кольцевом объемном оптическом резонаторе, содержащем ограниченную наружной и внутренней стенками кольцевую замкнутую полость с, по меньшей мере, одним впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль коаксиальных поверхностей полости, образующих оптическую ось в виде замкнутой ломаной линии и, по меньшей мере, одно выпускное отверстие для излучения фотонов, по предложению, замкнутая полость выполнена между наружной и внутренней стенками в виде тороидальных коаксиальных поверхностей или наружной и внутренней стенками в виде коаксиальных многогранников, зеркала системы установлены с нечетным количеством отражающих граней зеркал, и расположены относительно друг друга с образованием верхнего и нижнего односторонних световодов с конечными глухими зеркалами, направленными на выпускное отверстие для излучения фотонов и далее на вход выводного оптического резонатора для усиления, фокусировки и вывода лазерного луча. Тороидальные коаксиальные поверхности выполнены в виде поверхностей образуемых при вращении линии ограничивающей периметр выпуклой плоской геометрической фигуры, вокруг оси лежащей в плоскости этой фигуры и не пересекающей ее. Оптический резонатор содержит коаксиальные поверхности образуемые вращением линии ограничивающей периметр одной выпуклой плоской геометрической фигуры из группы: прямоугольник, окружность, эллипс, бочка, усеченный эллипс, многоугольник или комбинированная фигура. Отражающие грани зеркал верхнего и нижнего световода могут быть выполнены с охлаждаемыми полостями, а торцевые глухие зеркала верхнего и нижнего световода коаксиальных поверхностей резонатора могут быть установлены под углом так, что излучение со световодов фокусируется на глухом зеркале выпускающего выходного оптического резонатора. Отводное отверстие оптического резонатора может быть выполнено в виде кольцевого сопла с диффузором, а конечные глухие зеркала световодов направлены на основное глухое выпускное зеркало конфокального или симметричного линейного оптического резонатора.

Сущность изобретения иллюстрируется фиг. 1 -5.

На Фиг. 1 - конструктивная схема резонатора, поперечный разрез;

На Фиг. 2 - конструктивная схема резонатора, продольный разрез;

На Фиг. 3 - изменение приведенного объема кольцевого резонатора при различных геометрических формах приточной части;

На Фиг. 4 - изменение приведенной площади внутренней поверхности кольцевого резонатора при различных геометрических формах приточной части;

На Фиг. 5 - изменение приведенной массы кольцевого резонатора при различных геометрических формах приточной части;

Кольцевой объемный оптический резонатор, содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость образующую верхний и нижний световоды 1, зоны охлаждения световодов 2, систему зеркал 3, установленных вдоль коаксиальных поверхностей полости, вспомогательные глухие зеркала 4, глухие выпускающие зеркала световодов 9 ориентированные на основное глухое выпускное зеркало 11, направленное на выпускное отверстие для излучения фотонов и далее на вход выводного оптического резонатора 6 с полупрозрачным выводным зеркалом 5, для усиления, фокусировки и вывода лазерного луча 7. Оптический резонатор, имеет впускные отверстия 8, соединенные с отверстиями входной кольцевой камеры и кольцевое отводное отверстие с установленным на нем выходным диффузором 10.

Изобретение основано на том, что рабочий объем предложенного кольцевого объемного оптического резонатора, выполненный в виде замкнутой тороидальной полости, образует между наружной и внутренней стенками коаксиальные поверхности, площадь которых превышает площадь поверхности резонатора известного типа (прототип) имеющего одинаковую длину.

Сравнение проведено в безразмерных параметрах:

Средний диаметр кольцевого резонатора примем - радиус кругового тора;

d=0.8⋅r - диаметр дна бочки; h=2⋅r - ширина резонатора.

Расчетные формулы для объемов и площадей внутренних поверхностей приводятся к виду:

- для ограниченного кольцевого канала кольцевого резонатора:

- объем: -

- площадь внутренней поверхности: -

- для торовой поверхности:

- объем: -

- площадь внутренней поверхности: -

- для бочкообразной поверхности: образующая сфера:

- объем: -

- площадь внутренней поверхности: -

образующая парабола:

- объем: -

- площадь внутренней поверхности: -

- Добавочные объем и площадь поверхности выходного линейного резонатора (поз. 6):

Соответственно оценку массы приведенных для сравнения кольцевых резонаторов проведены по формуле [кг], где - приведенная (средняя) плотность материала конструкции резонатора. В оценочных расчетах, очевидно, что принимает значение коэффициента пропорциональности.

Результаты сравнения приведены на Фиг. 3, 4 и 5.

Сравнительный анализ данных представленных на Фиг. 3-5 показывает, что:

1. Рабочий объем торового кольцевого оптического резонатора при приведенных одинаковых геометрических размерах превосходит (см. Фиг. 3) кольцевой резонатор на (3-5)%, что может привести к большей добротности контура и увеличенному коэффициенту усиления (αр) резонатора

2. Приведенная площадь внутренней поверхности торового кольцевого оптического резонатора при приведенных одинаковых геометрических размерах превосходит (см. Фиг. 4) кольцевой резонатор в (3-4) раза, что существенно упрощает технологию установки и охлаждение направленных отражающих граней зеркал световодов (поз. 1) и их юстировку относительно глухих зеркал (поз. 4). При этом увеличенное число отражающих граней увеличит число переотражений излучений фотонов, что приведет к увеличенному коэффициенту усиления резонатора - αр;

3. Согласно Фиг. 5 приведенные массовые характеристики предлагаемого кольцевого объемного оптического резонатора идентичны известному кольцевому резонатору. Несмотря на это получены увеличенные рабочий объем и площади расположения направленных отражающих граней зеркал световодов (поз. 1), что приводит к большей эффективности оптического резонатора предлагаемой конструкции.

Таким образом, технический результат изобретения достигается тем, что при оптимальных весовых параметрах объемного кольцевого резонатора получены увеличенные отражающие площади внутренних поверхностей, что приводит к увеличению эффективности лазера в целом за счет увеличенной добротности контура резонатора.

Конструктивные размеры резонатора, в частном случае, определяются из возможности размещения и установки его в конструкции эксплуатируемого и перспективного газотурбинного двигателя.

Форма сечения полости резонатора устанавливается по правилу, описывающему тела вращения, и образуется при вращении линии ограничивающей периметр одной выпуклой плоской геометрической фигуры преимущественно окружности, элипса, бочки, усеченного эллипса, многоугольника или любой комбинированной фигуры.

Зеркала системы установлены с нечетным количеством отражающих граней зеркал, и расположены относительно друг друга с образованием верхнего и нижнего односторонних световодов с конечными глухими зеркалами. Нечетное количество зеркал системы выбрано для того чтобы не было парного переотражения на гранях зеркал, где луч уже отразился, то есть луч должен быть непрерывным и замкнуться только на глухом выводном зеркале выпускного линейного резонатора.

Отражающие грани зеркал верхнего и нижнего световода могут быть выполнены с охлаждаемыми полостями, так и без охлаждающих полостей, что связано с жаростойкостью использованных материалов, а торцевые глухие зеркала верхнего и нижнего световода коаксиальных поверхностей резонатора могут быть установлены под углом так, что излучение со световодов фокусируется на глухом зеркале выпускающего выходного оптического резонатора, что определяется работоспособностью и эффективностью работы оптического резонатора.

Отводное отверстие оптического резонатора может быть выполнено в виде кольцевого сопла с диффузором, Наличие диффузора приводит к выравниванию потока и его торможению перед выпуском в резонатор, а конечные глухие зеркала световодов направлены на основное глухое выпускное зеркало конфокального или симметричного или любого типа известного линейного оптического резонатора.

Наружная и внутренняя стенки полости могут быть выполнены в виде коаксиальных фигур различной геометрии например: виде коаксиальных многогранников, Целесообразность выбора такой форму резонатора определяется реализуемыми технологиями изготовления.

Работа предлагаемого кольцевого объемного оптического резонатора, осуществляется следующим образом.

Через впускные отверстия 8, соединенные с отверстиями входной кольцевой камеры (на фигурах не показанной) в полость оптического резонатора подают поток продуктов стехиометрического сгорания горючего и балластировочных газов (активная среда), которые имеют инверсию населенностей и обладают способностью излучать световую волну. Чтобы усилить излучаемую световую волну, ее направляют по внутренним поверхностям клинообразных специально ориентированных, отражающих, охлаждаемых зеркальных граней 3, таким образом, чтобы излучения спаренных фотонов активной среды лазера по световодам 1, поток которых подводится через кольцевую входную камеру 8, попадали на выводные ориентированные вспомогательные глухие зеркала 4, глухие выпускающие зеркала световодов 9, направленных на основное глухое выпускное зеркало 11 и далее на вход выводного оптического резонатора 6 с полупрозрачным выводным зеркалом 5, для усиления, фокусировки и вывода лазерного луча 7. После многократного отражения от специально ориентированных по направлению луча отражающих зеркальных граней световодов 3, усиления и формирования лазерного луча в выводном оптическом резонаторе 6, лазерный луч 7 выводится к потребителям через полупрозрачное торцевое зеркало 5. Все отражающие поверхности светоаодов 1 имеют зоны охлаждения 2, что обеспечивает температурную стабильность ориентированных граней 3 и юстировочную концентрацию излучения фотонов активной среды лазера на выпускающих глухих зеркалах 4 без существенных искажений и потерь. Все отражающие поверхности зеркальных граней светоаодов 1 имеют нечетное количество.

После прохождения кольцевого объемного оптического резонатора активная среда отводится через кольцевое отводное отверстие с установленным на нем выходным диффузором 10, на ресивер и далее через регулируемый отводящий канал в атмосферу.(на фигурах не показано).

Предложенный кольцевой объемный оптический резонатор позволяет получить оптимальные внутренние отражающие поверхности с ориентированными отражающими гранями и наибольшего объема с максимальным коэффициентом усиления и минимальным весом с возможностью парактического использования кольцевого потока активной среды для формирования лазера и с возможностью интегрирования его в конструкцию эксплуатируемого и перспективного газотурбинного двигателя в составе бортового авиационного лазерного комплекса.


Кольцевой объёмный оптический резонатор
Кольцевой объёмный оптический резонатор
Кольцевой объёмный оптический резонатор
Кольцевой объёмный оптический резонатор
Кольцевой объёмный оптический резонатор
Кольцевой объёмный оптический резонатор
Источник поступления информации: Роспатент

Showing 81-90 of 110 items.
17.10.2019
№219.017.d677

Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя и газотурбинный двигатель для его осуществления

Изобретение относится к лазерной технике и может быть использовано при создании технологических лазерных систем, интегрированных в конструкцию газотурбинного двигателя. Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя включает...
Тип: Изобретение
Номер охранного документа: 0002702921
Дата охранного документа: 14.10.2019
01.11.2019
№219.017.dbf6

Способ испытаний авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, к авиационным двигателям типа газотурбинных, а именно к способам испытаний при их создании, экспериментальной доводке характеристик опытного и промышленного экземпляров и эксплуатации. В известном способе испытаний авиационного...
Тип: Изобретение
Номер охранного документа: 0002704583
Дата охранного документа: 29.10.2019
10.11.2019
№219.017.e008

Маслосистема авиационного газотурбинного двигателя с форсажной камерой

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного газотурбинного двигателя (далее ГТД) с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. Технический результат изобретения - повышение надежности работы ГТД путем упрощения...
Тип: Изобретение
Номер охранного документа: 0002705501
Дата охранного документа: 07.11.2019
13.11.2019
№219.017.e11c

Система управления расходом топлива в газотурбинный двигатель

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления авиационными ГТД для регулирования расхода топлива в КС. Техническим результатом настоящего изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002705694
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e425

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя содержит компрессор низкого давления, канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход - с затурбинной полостью. Система охлаждения затурбинных элементов снабжена...
Тип: Изобретение
Номер охранного документа: 0002706524
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e459

Способ испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний газотурбинных двигателей (ГТД). При осуществлении предложенного способа ГТД выводят на максимальный режим работы. Для двигателя с нерегулируемым реактивным соплом до начала испытаний для не менее чем трех...
Тип: Изобретение
Номер охранного документа: 0002706513
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45c

Способ очистки газотурбинного двигателя

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности, к способам, связанным с необходимостью очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных осаждений...
Тип: Изобретение
Номер охранного документа: 0002706516
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45e

Способ контроля технического состояния газотурбинного двигателя во время его эксплуатации

Изобретение относится к области эксплуатации газотурбинных двигателей (ГТД), а именно к контролю их технического состояния во время эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ контроля технического состояния ГТД во время его эксплуатации включает...
Тип: Изобретение
Номер охранного документа: 0002706523
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e47c

Имитатор топливного коллектора

Изобретение относится к установкам стендов полунатурного моделирования с замкнутой топливной системой для испытаний систем автоматического управления, в частности газотурбинного двигателя (ГТД), и может быть использовано для моделирования процессов заполнения или опорожнения топливных...
Тип: Изобретение
Номер охранного документа: 0002706522
Дата охранного документа: 19.11.2019
24.11.2019
№219.017.e626

Стенд для комплексных испытаний двигательных и самолетных агрегатов газотурбинного двигателя

Изобретение относится к машиностроению, в том числе к газотурбиностроению, а именно к испытательной технике, в частности к стендам полунатурного моделирования испытаний агрегатов и систем, и может быть использовано при ресурсных испытаниях с имитацией эксплуатационных режимов нагружения...
Тип: Изобретение
Номер охранного документа: 0002706829
Дата охранного документа: 21.11.2019
Showing 81-90 of 297 items.
10.07.2015
№216.013.5f49

Способ капитального ремонта турбореактивного двигателя (варианты) и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя, при котором создают ротационно-обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555934
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4a

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555935
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4b

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555936
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4c

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555937
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4d

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который...
Тип: Изобретение
Номер охранного документа: 0002555938
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4e

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель (ТРД), выполненный двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины...
Тип: Изобретение
Номер охранного документа: 0002555939
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4f

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f50

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002555941
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f51

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя, собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555942
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f53

Способ капитального ремонта турбореактивного двигателя и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом (варианты)

Изобретение относится к энергетике. Способ капитального ремонта авиационных турбореактивных двигателей, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и...
Тип: Изобретение
Номер охранного документа: 0002555944
Дата охранного документа: 10.07.2015
+ добавить свой РИД