×
02.08.2019
219.017.bbc5

Результат интеллектуальной деятельности: СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу газофазного осаждения покрытий тантала на поверхности изделий и может быть использовано для создания защитных покрытий, например, на оружейных стволах, в печатающих головках струйных устройств, биомедицинских имплантатах, а также для создания покрытий в изделиях микроэлектроники, например, в качестве диффузионного барьера между медью и кремнием, в качестве электрода затвора в полупроводниковых полевых транзисторах. Способ газофазного осаждения тантала на поверхность стального изделия включает подачу паров галогенида тантала и паров восстановителя к поверхности стального изделия. В качестве восстановителя используют кадмий, цинк, магний или алюминий. Пары галогенида тантала и пары восстановителя транспортируют к поверхности стального изделия в потоках инертных газов-носителей раздельно. Перед осаждением на поверхность стального изделия обеспечивают смешивание упомянутых паров галогенида тантала и паров восстановителя в соотношении от 1:1 до 1:10 и их нагрев до 500-1400С. В частных случаях осуществления изобретения в качестве галогенида тантала используют бромид тантала. В качестве галогенида тантала используют иодид тантала, при этом в поток иодида тантала добавляют пары йода. Обеспечивается осаждение покрытий тантала на поверхности изделий в безводородной атмосфере при относительно низких температурах осаждения, что улучшает качество покрытий, обеспечивает безопасность работы и снижает требования к оборудованию. 2 з.п. ф-лы, 1 ил., 1 пр.

Настоящее изобретение относится к способу осаждения тантала на поверхности изделий и может быть использовано для создания защитных покрытий, например, на оружейных стволах, в печатающих головках струйных устройств, биомедицинских имплантатах, а также для создания покрытий в изделиях микроэлектроники, например, в качестве диффузионного барьера между медью и кремнием, в качестве электрода затвора в полупроводниковых полевых транзисторах.

Известен способ осаждения тантала из паров металлорганических реагентов таких, например, как бета-дикетонатные и алкоксидные комплексы тантала (Патент US № US 5677002 А, опубликован 14.10.1997, МПК С23С 16/00). Реагенты испаряют при температурах 140-260°C, а полученные пары транспортируют в потоке газа-носителя к нагретой до температур от 250 до 1000°C подложке, на которой реагенты разлагаются с образованием танталового покрытия. Использование в качестве реагентов различных видов металлорганических соединений тантала позволяет изменить характеристики процесса осаждения покрытий за счет различия температур испарения и разложения реагентов, а также возможности их использования с другими реагентами для получения более сложных, чем чистый тантал, покрытий (оксидов, силицидов и др.). Известно, что при использовании некоторых реагентов, например, циклопентадиениловых соединений тантала, чистоту получаемых покрытий тантала можно повысить (Патент US № US 6989457 В2, опубликован 24.01.2006, МПК С23С 14/26).

Недостатком осаждения тантала из металлорганических соединений тантала является возможность образования в покрытии примесей углерода и водорода, находящихся в составе металлоорганических соединений. Контролировать образование и содержание указанных примесей сложно, поэтому свойства танталовых покрытий могут меняться довольно сильно и неконтролируемо. Применение металлорганических соединений с относительно низкой температурой разложения позволяет повысить чистоту покрытий, но снижает адгезию тантала к подложке, так как при низких температурах не образуется зона диффузного взаимодействия покрытия с подложкой. Другим недостатком применения металлорганических соединений является их способность полимеризоваться при нагревании в процессе их испарения и последующего прохождения реакционной зоны. Продукты полимеризации непригодны в качестве реагентов для осаждения тантала и могут осаждаться в испарительной камере и газопроводах, приводя к неработоспособности оборудования.

Известен способ осаждения тантала на поверхности материалов с температурой плавления выше примерно 500°C из смеси водорода и галогенида тантала (Патент US №2604395, опубликован 22.07.1952, МПК С23С 16/14), который принят в качестве прототипа. Галогенид тантала испаряют при температурах ниже температуры кипения галогенида. Полученные пары смешивают с водородом так, чтобы водорода было достаточно для полного восстановления галогенида тантала или больше, что в большинстве случаев предпочтительно. Указанная смесь паров транспортируется в реакционную зону, где при температурах от 500 до 1300°C водород восстанавливает галогенид тантала, в результате чего металлический тантал осаждается на подложке. Оптимальная температура осаждения тантала зависит от типа подложки. Для подложек меди и молибдена температура начала осаждения составляет около 500°C, для подложек железа - около 800°C для никеля - около 1000°C. Особенностью данного метода осаждения тантала является диффузия тантала в поверхностный слой подложки, что обеспечивает адгезию покрытия.

Недостатком данного способа является то, что применение водорода небезопасно и может привести к наводораживанию и водородному охрупчиванию, например, реакционной камеры, покрытия, частей подложи, что, в частности, ухудшает свойства покрытий. Коме того, применение водорода и его взаимодействие с галогенидами с образованием химически агрессивных галогенводородов повышает требования к используемому оборудованию. Транспортировка водорода совместно с галогенидом тантала к подложке по одному каналу может приводить к их нежелательному преждевременному взаимодействию.

На рисунке 1 изображена схема части реактора с размещением исходных реагентов - бромида тантала и кадмия в дозаторе-смесителе, где:

1. Галогенид тантала

2. Металл-восстановитель

3. Сопловые вкладыши со смесителем в виде сопла

4. Подложка

5. Нагреватель

6, 7, 8. Каналы подачи инертного газа-носителя.

Техническим результатом данного изобретения является повышение безопасности осаждения покрытий, снижение требований к применяемому оборудованию и повышение качества покрытий.

Технический результат достигается тем, что в качестве восстановителя используют кадмий, цинк, магний или алюминий, причем пары галогенида тантала и пары восстановителя транспортируют к поверхности стального изделия в потоках инертных газов-носителей раздельно, а перед осаждением на поверхность стального изделия, обеспечивают смешивание упомянутых паров галогенида тантала и паров восстановителя в соотношении от 1:1 до 1:10 и их нагрев до 500-1400°C.

Кроме того, в качестве галогенида тантала используют бромид тантала.

Кроме того, в качестве галогенида тантала используют иодид тантала, при этом в поток иодида тантала добавляют пары йода.

Применение металла-восстановителя в качестве восстановителя позволит повысить безопасность осаждения покрытий, снизит требования к применяемому оборудованию покрытий и улучшит их качество покрытий за счет отсутствия необходимости подачи водорода и негативного воздействия водорода на материалы.

Раздельная подача реагентов по каналам за счет отсутствия контакта между ними предотвратит их досрочное взаимодействие.

Применение бромида тантала в качестве галогенида и кадмия в качестве металла-восстановителя позволит максимально снизить температуры осаждения и требования к оборудованию.

Сущность изобретения заключается в том, что для осаждения металлического тантала на поверхности и внутренних полостях изделий сложной формы используется восстановление паров галогенидов тантала парами металла-восстановителя, в соответствие с общей реакцией:

где G один из F, Cl, Br, I, а металл-восстановитель Me один из Cd, Zn, Mg, Al, K, Na, Li.

Для протекания реакции (1) галогенид тантала и металл-восстановитель испаряются в разных испарителях. Полученные пары транспортируются по отдельным каналам потоками инертных газов-носителей (гелием или аргоном) для предотвращения их досрочного взаимодействия. Вблизи подложки пары смешиваются нагреваются до температуры осаждения и взаимодействуют по реакции (1), что приводит к осаждению тантала на подложке. Качество и толщина покрытий будет определяться температурой и временем осаждения, видом реагентов в реакции, их концентрацией в потоках газов носителей и другими параметрами. При проведении осаждения рекомендуется поддерживать соотношение реагентов TaG5 / Me от 1/1 до 1/10.

Рассмотрим оптимальный выбор реагентов реакции (1) для следующих условий: проведение осаждения при атмосферном давлении, относительно невысокая температура осаждения тантала - 500°C, соответствующая минимальной температуре, указанной для прототипа, температуры испарения исходных реагентов ниже, чем температура осаждения, обеспечение безопасности работы в сочетании с низкими требованиями к оборудованию. Галогениды тантала начинают интенсивно испаряться выше 200°C (кроме иодида), при этом их летучесть падает в ряду TaF5>TaCl5>TaBr5>Tal5. Иодид тантала значительно менее летуч, чем остальные галогениды, и частично разлагается при испарении, что затрудняет его использование. Для предотвращения разложения иодида в испаритель галогенида можно в потоке газа-носителя подавать пары йода, но при этом будет сложнее контролировать содержание галогенида в парах. При 500°C у галогенидов металлов-восстановителей, участвующих в реакции (1), летучесть растет в ряду фторид > хлорид > бромид > иодид. Фториды и хлориды металлов-восстановителей при данных условиях будут соосаждаться вместе с танталом. Соосаждение бромидов металлов-восстановителей будет существенно меньше и потому выбор бромида тантала в качестве исходного реагента предпочтителен с точки зрения чистоты осадка. В ряду металлов-восстановителей Na>K>Mg>Cd>Li>Zn>Al летучесть соответствующих бромидов падает. При этом только четыре последних металла в приведенном ряду имеют относительно низкую летучесть бромидов и практически не будут соосаждаться при 500°C вместе с танталом. При 500°C летучесть паров металлов-восстановителей падает в ряду K>Na>Cd>Zn>Li>Mg>Al. Щелочные металлы в этом ряду довольно опасны и неудобны в использовании. Низкая летучесть Zn, Mg и Al при 500°C обеспечит достаточную для проведения реакции (1) концентрацию их паров. Кадмий имеет достаточно высокое давление насыщенных паров и потому, при выбранных условиях, является наиболее предпочтительным металлом-восстановителем.

Пример. На фигуре приведена схема части реактора с размещением исходных реагентов - галогенида тантала и металла-восстановителя в дозаторе-смесителе, имеющем два установленных друг над другом испарителя со спиральными каналами, в которые загружены бромид тантала 1 и кадмий 2 и коаксиально установленные сопловые вкладыши 3 со смесителем в виде сопла в нижней части, образующие каналы для подачи насыщенной парогазовой смеси в реакционную камеру к подложке 4, нагреваемой нагревателем 5.

Газ-носитель гелий подается по каналам 6, 7, 8. Подаваемый по каналу 6 гелий насыщается парами бромида тантала, испаряемыми при температурах 180-250°C и транспортируется по центральному сопловому вкладышу 3 к образцу 4. Подаваемый по каналу 8 гелий насыщается парами кадмия при температурах 400-500°C и транспортируется к образцу по внешнему сопловому вкладышу 3. Дополнительный канал 6 используется для возможности разбавления потоков подаваемых из соплового вкладыша 3. Конструкция дозатора-смесителя позволяет поддерживать содержание паров близким к их содержанию в насыщенном паре, управляя температурами испарения в каждом из испарителей 1 и 2, и, следовательно, задавать соотношение бромида тантала к кадмию на необходимом уровне. Нагревателем 5 поддерживается температура осаждения тантала от 500°C до 1400°C.

Выше указывалось, что толщина и качество покрытий зависят от ряда факторов. Например, при атмосферном давлении на изготовленных из стали 12Х18Н10Т плоских дисках диаметром 12 мм, при соотношении бромид тантала/кадмий примерно 2/5 и температуре осаждения 700°C за один час осаждается покрытие тантала толщиной 10 мкм.


СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ
СПОСОБ ГАЗОФАЗНОГО ОСАЖДЕНИЯ ТАНТАЛА НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
15.10.2019
№219.017.d5f7

Градиентное металлополимерное покрытие

Изобретение относится к области защитных полимерных покрытий, может быть использовано в машиностроительной, авиационной, приборостроительной промышленности и других областях техники. Градиентное металлополимерное покрытие для металлической поверхности выполнено в виде градиентного оплавленного...
Тип: Изобретение
Номер охранного документа: 0002702881
Дата охранного документа: 11.10.2019
Showing 1-10 of 40 items.
10.04.2013
№216.012.335c

Способ нанесения покрытия

Изобретение относится к области химии. На внутреннюю поверхность корпуса аппарата установок очистки природного газа от кислых компонентов, выполненного из стали, в местах длительного контакта с жидкой фазой насыщенного раствора абсорбента наносят покрытие. Покрытие наносят высокоскоростным...
Тип: Изобретение
Номер охранного документа: 0002478691
Дата охранного документа: 10.04.2013
10.06.2013
№216.012.47b6

Способ снижения динамической нагруженности транспортного средства при движении по поверхности, самолет и транспортное средство, реализующие этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства при движении по поверхности и транспортным средствам, реализующим этот способ. Способ заключается в том, что измеряют реакцию модели транспортного средства с разными характеристиками жесткости и...
Тип: Изобретение
Номер охранного документа: 0002483938
Дата охранного документа: 10.06.2013
20.10.2014
№216.012.fe5e

Состав уплотнительного покрытия для модификации элемента статора турбины

Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины....
Тип: Изобретение
Номер охранного документа: 0002530974
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe5f

Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры

Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя. Подслой...
Тип: Изобретение
Номер охранного документа: 0002530975
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe62

Состав присадочного материала

Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин. Состав присадочного материала в виде порошка для восстановления жаропрочных сталей характеризуется тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si -...
Тип: Изобретение
Номер охранного документа: 0002530978
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.04e0

Многослойное теплозащитное покрытие

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический...
Тип: Изобретение
Номер охранного документа: 0002532646
Дата охранного документа: 10.11.2014
27.02.2015
№216.013.2d81

Способ получения защитного упрочняющего покрытия на деталях запорной арматуры

Изобретение относится к способу получения защитного упрочняющего покрытия на деталях запорной арматуры. Напыление производят высокоскоростным газопламенным методом со скоростью перемещения горелки относительно обрабатываемой поверхности 0,5÷1,0 м/с. Наносимый порошковый материал содержит...
Тип: Изобретение
Номер охранного документа: 0002543117
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3835

Способ ремонтной наплавки лопаток энергетических установок

Изобретение относится к способу ремонта лопаток энергетических установок. Способ включает подготовку поверхности лопатки. Нанесение покрытия с применением лазерного излучения и одновременной подачей порошкообразного присадочного материала в ванну расплава. В процессе наплавки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002545877
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3836

Способ защиты лопаток паровых турбин от парокапельной эрозии

Изобретение относится к защите лопаток паровых турбин от парокапельной эрозии. Способ включает нанесение на лопатку защитного покрытия. Покрытие наносят методом лазерной наплавки. Лазерную головку перемещают со скоростью линейной интерполяции V не более 0,05 м/с. Мощность лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002545878
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3837

Способ модификации элемента статора энергетической турбины

Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки...
Тип: Изобретение
Номер охранного документа: 0002545879
Дата охранного документа: 10.04.2015
+ добавить свой РИД