×
02.08.2019
219.017.bba5

Результат интеллектуальной деятельности: Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения

Вид РИД

Изобретение

№ охранного документа
0002696094
Дата охранного документа
31.07.2019
Аннотация: Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач пеленгования источников радиоизлучения (ИРИ). Достигаемый технический результат – повышение точности и достоверности пеленгования источников радиоизлучения, проявляющийся в уменьшении среднеквадратической ошибки и вероятности аномальной ошибки пеленгования. Для достижения технического результата выполняют синхронную регистрацию принятых одночастотных и многочастотных сигналов, образованных всеми входящими в N-элементную решетку антеннами; по каждому i-му сигналу в полосе частот δf вычисляют накопленные по спектральным отсчетам сигнала взаимные энергии между всеми парами пространственных каналов с порядковыми номерами и , используя которые определяют решающую функцию пеленгования, представляющую собой квадрат модуля двумерного углового спектра сигналов и вычисляемую формуле: где – диаграмма направленности n-й антенны; m = 0...М-1 – текущий номер узла сетки по азимуту; М - число узлов по азимуту; h = 0...Н-1 – текущий номер узла сетки наведения решетки по углу места; Н - число узлов по углу места; – модельная фазирующая функция, зависящая от конфигурации антенной решетки. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач пеленгования источников радиоизлучения (ИРИ).

Известны способы пеленгования источников радиоизлучения, представленные например в [Уфаев В.А. Обнаружение и идентификация сигналов в панорамных фазометрических радиопеленгаторах // Антенны, 2008 г. № 5.], [Уфаев В.А. Способ идентификации радиоизлучений патент РФ №2236021, G01S5/04], [Радзиевский В.Г., Уфаев В.А. Первичная обработка сигналов в цифровых панорамных обнаружителях-пеленгаторах. – Радиотехника, 2003, № 7, с. 26-31], включающие прием радиоизлучений с помощью антенной системы (АС), состоящей из идентичных антенн и многоканального приемного устройства, измерение для каждой из возможных комбинаций пар антенн комплексных амплитуд спектральных компонент преобразования Фурье принимаемых временных реализаций, выполнение обнаружения каждой спектральной компоненты и идентификации обнаруженных компонент про принадлежности к сигналу одного источника радиоизлучения, формирование на основе измеренных комплексных амплитуд решающей функции пеленгования – углового спектра, являющегося функцией азимута и (или) угла места направления на ИРИ, максимизацию углового спектра и нахождение оценок азимута и (или) угла места направления на ИРИ как аргументов глобального максимума углового спектра. Однако в выражения для углового спектра входит лишь одна из спектральных компонент принимаемой реализации, несмотря на то, что по результатам выполнения идентификации определятся спектральные компоненты, принадлежащие сигналу одного ИРИ. Таким образом, процедура формирования углового спектра не предполагает выполнения накопления спектральных компонент сигналов, что не позволяет за счет накопления информации повысить показатели эффективности последующего пеленгования ИРИ, такие как точность и достоверность пеленгования.

Наиболее близким аналогом по технической сущности к предлагаемому является способ обнаружения и определения двумерного пеленга и частоты источников радиоизлучения по патенту РФ № 2190236, G01S 5/04, принятый за прототип.

Способ-прототип включает следующие операции.

1. Когерентный прием сигналов, одновременно попадающих в текущую полосу приема, когерентный перенос на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму.

2. Синхронную регистрацию принятых одночастотных и многочастотных сигналов для всех баз, образованных опорной и всеми входящими в N-элементную решетку антеннами, в полосе приема, во много раз превышающей ширину спектра одиночного сигнала передатчика, восстановление с использованием преобразования Фурье комплексных временных спектров синхронно зарегистрированных сигналов опорной и каждой n-й антенны, где n=1…N, предполагающий формирование из восстановленных комплексных временных спектров сигналов опорной и каждой n-й антенны взаимных спектральных плотностей

(1)

и комплексных коэффициентов взаимной корреляции спектральной плотности на каждой частоте f принятых сигналов со спектральными плотностями на всех остальных частотах полосы приема по формуле

, (2)

после чего вычисляют модуль данных комплексных коэффициентов взаимной корреляции и сравнивают его значение с фиксированным порогом корреляции. Сигналы с частотами, на которых превышен порог, объединяют в i-й сигнал и идентифицируют его как обнаруженный сигнал, принадлежащий одному передатчику с полосой частот δfi,, образованной идентифицированными к данному сигналу спектральными компонентами.

3. По каждому i-му сигналу в полосе частот δfi вычисляют спектральные комплексные амплитуды сигналов,

, (3)

используя которые определяют реальную часть двумерного комплексного углового спектра сигналов

(4)

где – диаграмма направленности n-й антенны;

m = 0...М-1 – текущий номер узла сетки по азимуту;

М - число узлов по азимуту;

h = 0...Н-1 – текущий номер узла сетки наведения решетки по углу места;

Н - число узлов по углу места;

 – модельная фазирующая функция, зависящая от конфигурации антенной решетки,

и по максимумам определяют азимутальные αm0 и угломестные βh0 пеленги i-х сигналов передатчиков, обнаруженных в полосе приема.

Однако в данном способе имеются следующие недостатки.

1. Способ основан на использовании «опорной антенны», вследствие чего (как справедливо отмечено в [Радзиевский В.Г., Уфаев В.А. Первичная обработка сигналов в цифровых панорамных обнаружителях-пеленгаторах. – Радиотехника, 2003, № 7, с. 26-31]) не учитывается, что взаимный спектр сигнала в каналах приема необходимо определять для всех возможных комбинаций пар антенн. В случае приема сигналов с помощью многоканального моноимпульсного обнаружителя-пеленгатора (ОП) указанное обстоятельство является существенным недостатком данного способа, неоправданно неиспользующим имеющиеся технические возможности радиоэлектронной аппаратуры ОП и снижающим показатели эффективности как решения задачи идентификации спектральных компонент по принадлежности к сигналу одного источника радиоизлучения, так и пеленгования ИРИ.

2. Наличие опорного канала также может приводить к ухудшению точности и достоверности пеленгования в зависимости от того, какой из каналов антенной системы выбран опорным, что в реальных условиях функционирования ОП при их размещении на носителях различных типов обусловлено наличием эффекта «затенения» опорного канала в зависимости от его взаимного расположения относительно остальных антенн АС, а также объектов, расположенных в непосредственной близости к АС (например, мачтового устройства).

3. Способ предполагает вычисление реальной части двумерного комплексного углового спектра сигналов, что противоречит результатам решения задачи пеленгования в рамках теории статистической радиотехники. Максимум модуля углового спектра характеризует наибольший по амплитуде отклик сфазированной многоканальной АС в направлении на ИРИ, при этом фазирование обеспечивается лишь при вычислении модуля углового спектра.

4. Выражение для двумерного углового спектра предполагает вычисление суммы произведений измеренных канальных комплексных амплитуд сигналов на парциальные диаграммы направленности и модельные фазирующие функции антенн. Однако по результатам вычисления данной суммы не выполняется ее нормирование на квадратный корень из суммы квадратов модулей парциальных диаграмм направленностей антенн, что также противоречит результатам решения задачи пеленгования в рамках теории статистической радиотехники.

Указанные недостатки существенным образом ограничивают область применения данного способа, а их наличие определяет нецелесообразность его использования в современных (перспективных) многоканальных системах радиомониторинга при решении задачи пеленгования ИРИ.

Задачей предлагаемого технического решения является повышение точности и достоверности пеленгования источников радиоизлучения, обеспечиваемое за счет накопления спектральных компонент, идентифицированных по принадлежности к сигналу одного источника радиоизлучения.

Для решения поставленной задачи в способе, включающем когерентный прием сигналов, одновременно попадающих в текущую полосу приема, когерентный перенос на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму; синхронную регистрацию принятых одночастотных и многочастотных сигналов для всех баз, образованных всеми входящими в N-элементную решетку антеннами, в полосе приема, во много раз превышающей ширину спектра одиночного сигнала передатчика, восстановление с использованием преобразования Фурье комплексных временных спектров синхронно зарегистрированных сигналов опорной и каждой n-й антенны, где n=1…N, предполагающий формирование из восстановленных комплексных временных спектров сигналов опорной и каждой n-й антенны взаимных спектральных плотностей

и комплексных коэффициентов взаимной корреляции спектральной плотности на каждой частоте f принятых сигналов со спектральными плотностями на всех остальных частотах полосы приема по формуле

,

после чего вычисляют модуль данных комплексных коэффициентов взаимной корреляции и сравнивают его значение с фиксированным порогом корреляции, сигналы с частотами, на которых превышен порог, объединяют в i-й сигнал и идентифицируют его как обнаруженный сигнал, принадлежащий одному передатчику с полосой частот δfi,, образованной идентифицированными к данному сигналу спектральными компонентами, по каждому i-му сигналу в полосе частот δfi вычисляют решающую функцию пеленгования, по максимумам которой определяют азимутальные αm0 и угломестные βh0 пеленги i-го сигнала передатчика, обнаруженного в полосе приема; согласно изобретению, выполняют синхронную регистрацию принятых одночастотных и многочастотных сигналов и образованных всеми входящими в N-элементную решетку антеннами; по каждому i-му сигналу в полосе частот δfi вычисляют накопленные по спектральным отсчетам сигнала взаимные энергии между всеми парами пространственных каналов с порядковыми номерами и по формуле

,

используя которые определяют решающую функцию пеленгования, представляющую собой квадрат модуля двумерного углового спектра сигналов и вычисляемую по формуле

,

где – диаграмма направленности n-й антенны;

m = 0...М-1 – текущий номер узла сетки по азимуту;

М - число узлов по азимуту;

h = 0...Н-1 – текущий номер узла сетки наведения решетки по углу места;

Н - число узлов по углу места;

 – модельная фазирующая функция, зависящая от конфигурации антенной решетки.

Поставленная задача решается следующим образом.

В результате преобразования Фурье временной реализации спектр принимаемого с помощью ОП сигнала представлен несколькими спектральными компонентами, количество которых зависит от ширины полосы сигнала и длительности реализации. В рамках задачи обнаружения сигналов среди совокупности спектральных отсчетов определяются «сигнальные», в амплитуде и фазе которых содержится информация об излучаемой ИРИ радиоволне. При этом соотношение уровней обнаруженных спектральных компонент сигнала может быть различным.

В рамках теории статистической радиотехники пеленгование ИРИ должно выполняться независимо от соотношения уровней спектральных компонент принимаемого сигнала на основе элементов вычисленной матрицы взаимных энергий спектральных отсчетов, накопленной по всем обнаруженным и идентифицированным по принадлежности к сигналу данного ИРИ спектральным компонентам сигнала.

Рассмотрим случай приема плоской монохроматической радиоволны с помощью N-канального моноимпульсного ОП с АС произвольной конфигурации. Будем полагать, что выходы АС подключены к соответствующим входам – канального радиоприемного устройства, осуществляющего синхронное чтение входной реализации всеми приемными каналами.

Задача обнаружения-пеленгования в рамках теории статистической радиотехники может быть сформулирована как задача проверки статистических гипотез о наличии (гипотеза ) либо отсутствии (гипотеза ) информации о сигнале ИРИ в наблюдаемых данных. В результате максимизации функций правдоподобия наблюдаемых данных решающая функция пеленгования (в рассматриваемом случае – угловой спектр) должна вычисляться для каждого i-го сигнала в соответствии с выражением:

, (5)

где – накопленная по спектральным отсчетам i-го сигнала взаимная энергия между пространственными каналами с порядковыми номерами и;

. (6)

Накопление взаимных энергий спектральных компонент сигнала, выполняемое по формуле (6), инвариантно к начальным фазам образующих сигнал спектральных компонент ввиду вычисления взаимных и канальных энергий по каждой компоненте. Так как фаза взаимных энергий зависит от направления прихода радиоволны, то суммирование взаимных энергий для отсчетов сигнала одного и того же ИРИ обеспечивает синфазное сложение сигнальных составляющих и повышение результирующего отношения сигнал/шум (ОСШ).

Предлагаемый способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения предполагает выполнение следующих операций.

1. Когерентный прием сигналов, одновременно попадающих в текущую полосу приема, когерентный перенос на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму.

2. Синхронную регистрацию принятых одночастотных и многочастотных сигналов и образованных, всеми входящими в N-элементную решетку антеннами, в полосе приема, во много раз превышающей ширину спектра одиночного сигнала передатчика, восстановление с использованием преобразования Фурье комплексных временных спектров синхронно зарегистрированных сигналов опорной и каждой n-й антенны, где n=1…N, предполагающий формирование из восстановленных комплексных временных спектров сигналов опорной и каждой n-й антенны взаимных спектральных плотностей

,

и комплексных коэффициентов взаимной корреляции спектральной плотности на каждой частоте f принятых сигналов со спектральными плотностями на всех остальных частотах полосы приема по формуле

,

после чего вычисляют модуль данных комплексных коэффициентов взаимной корреляции и сравнивают его значение с фиксированным порогом корреляции. Сигналы с частотами, на которых превышен порог, объединяют в i-й сигнал и идентифицируют его как обнаруженный сигнал, принадлежащий одному передатчику с полосой частот δfi,, образованной идентифицированными к данному сигналу спектральными компонентами.

3. По каждому i-му сигналу в полосе частот δfi, вычисляют накопленные по спектральным отсчетам сигнала взаимные энергии между всеми парами пространственных каналов с порядковыми номерами и;

, (7)

используя которые определяют квадрат модуля двумерного углового спектра сигналов по формуле

, (8)

где – диаграмма направленности n-й антенны;

m = 0...М-1 – текущий номер узла сетки по азимуту;

М - число узлов по азимуту;

h = 0...Н-1 – текущий номер узла сетки наведения решетки по углу места;

Н - число узлов по углу места;

 – модельная фазирующая функция, зависящая от конфигурации антенной решетки,

и по максимумам определяют азимутальные αm0 и угломестные βh0 пеленги i-х сигналов передатчиков, обнаруженных в полосе приема.

Технический результат способа обеспечивается тем, что при формировании углового спектра используются накопленные по спектральным отсчетам сигнала взаимные энергии между всеми парами пространственных каналов обнаружителя-пеленгатора, что из-за инвариантности взаимных энергий к начальным фазам спектральных компонент обеспечивает синфазное сложение сигнальных спектральных составляющих и повышение результирующего отношения сигнал/шум (ОСШ).

Блок-схема устройства для реализации предлагаемого способа представлена на фиг. 1, где обозначено:

1 - многоканальная антенная система;

2 - многоканальное радиоприемное устройство;

3 - многоканальный аналого-цифровой преобразователь (АЦП);

4 - многопроцессорный вычислитель.

Устройство содержит многоканальную антенную систему 1, состоящую из n=1...N антенных элементов, объединенных в антенную решетку. Каждый элемент (антенна) решетки соединен с соответствующим входом многоканального радиоприемного устройства 2, N выходов которого соединены с соответствующими входами многоканального АЦП 3, N выходов которого соединены с соответствующими входами многопроцессорного вычислителя 4, N выходов которого являются выходами устройства. Многоканальное радиоприемное устройство 2 выполнено с общим гетеродином и с полосой пропускания каждого канала, во много раз превышающей ширину спектра одиночного сигнала передатчика. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов. Широкая полоса пропускания каналов устройства 2 необходима для одновременной многочастотной регистрации сигналов многих передатчиков. Многопроцессорный вычислитель 4 обеспечивает параллельную обработку многочастотных сигналов, принимаемых всеми N антеннами решетки.

Устройство работает следующим способом.

Многочастотные временные сигналы с N-выходов антенной системы (n=1…N), поступают на входы радиоприемного устройства 2, где в полосе приема, во много раз превышающей ширину спектра одночастотного сигнала передатчика, когерентно переносятся на более низкую частоту. С помощью аналого-цифровой преобразователь (АЦП) 3 сигналы синхронно преобразуются в цифровые сигналы , где – n- номер антенного элемента, а z – номер временного отсчета сигнала, и синхронно регистрируются в многопроцессорном вычислителе 4.

В вычислителе 4 выполняются следующие действия:

– восстановление с использованием преобразования Фурье комплексных временных спектров сигналов каждой n-й антенны;

– формирование из восстановленных комплексных временных спектров сигналов опорной и каждой n-й антенны взаимных спектральных плотностей по формуле (1) и комплексных коэффициентов взаимной корреляции спектральной плотности на каждой частоте f принятых сигналов со спектральными плотностями на всех остальных частотах полосы приема по формуле (2)

– вычисление накопленных по спектральным отсчетам сигнала взаимных энергий по формуле (7), используя которые определяют квадрат модуля двумерного углового спектра сигналов по формуле (8) и по максимумам определяют азимутальные αm0 и угломестные βh0 пеленги i-х сигналов передатчиков, обнаруженных в полосе приема.

Результаты моделирования предлагаемого способа повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения. На фиг. 2 представлены результаты статистического моделирования (измеренные пеленги и их гистограммы) для пеленгования радиоволн с помощью ОП с «невзаимодействующей» семиэлементной эквидистантной кольцевой антенной решеткой (ЭКАР). Моделировалось падение плоской радиоволны с азимутального направления 180 град. на двух частотах, соответствующих отношению радиуса ЭКАР к длине волны = 0,5 и 0,505 соответственно. Аддитивный шум предполагался гауссовским с нулевой средней одинаковой интенсивностью в каналах ОП и диагональной матрицей ковариации. Пеленг вычислялся в результате глобальной максимизации углового спектра (5), накопление спектральных компонент выполнялось по формуле (6). ОСШ первого спектрального отсчета соответствовало 12 дБ, второго – 7 дБ. Фиг.2а соответствует результатам пеленгования по первому спектральному отсчету, Фиг.2б – по второму отсчету, Фиг.2в – результатам пеленгования при накоплении взаимных энергий по двум спектральным отсчетам.

Видно, что накопление взаимных энергий спектральных компонент сигналов источников радиоизлучения в соотвесттвии с формулой (6) обеспечивает повышение точности и достоверности пеленгования. Исследования показали, за счет накопления взаимных энергий спектральных компонент сигналов источников радиоизлучения обеспечивается снижение вероятности аномальной и дисперсии нормальной ошибок пеленгования.

На фиг. 3 представлена рассчитанная по результатам моделирования зависимость средней квадратической ошибки (СКО) пеленгования от отношения . Кривая 1 соответствует результатам пеленгования по второму спектральному отсчету, кривая 2 – по первому, кривая 3 – результатам пеленгования с накоплением взаимных энергий спектральных компонент.

Результаты моделирования подтвердили, что предлагаемый способ накопления спектральных компонент сигнала обеспечивает уменьшение результирующей СКО пеленгования и аддитивное увеличение результирующего ОСШ при накоплении всех межканальных взаимных энергий в соотвесттвии с формулой

, (9)

где – ОСШ, соответствующее спектральной компоненте сигнала на частоте .

Достигаемый технический результат – повышение точности и достоверности пеленгования источников радиоизлучения, проявляющийся в уменьшении среднеквадратической ошибки и вероятности аномальной ошибки пеленгования.


Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения
Источник поступления информации: Роспатент

Showing 11-20 of 105 items.
19.01.2018
№218.016.0932

Устройство для измерения разности фаз радиосигналов

Изобретение относится к радиотехнике и может быть использовано в радиопеленгаторах, средствах радиомониторинга, системах фазовой автоподстройки частоты, системах синхронизации различного назначения и аналогичных средствах и системах, в которых осуществляются измерения разности фаз радиосигналов...
Тип: Изобретение
Номер охранного документа: 0002631668
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.2f6d

Способ организации защищенной системы связи

Изобретение относится к области телекоммуникаций. Технический результат заключается в сокращении времени организации сети связи с одновременным обеспечением гарантированной защиты от несанкционированного доступа передаваемых по радиоэфиру настроечных данных. В способе осуществляют обмен...
Тип: Изобретение
Номер охранного документа: 0002644523
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.33ff

Радиоприемное устройство с цифровой коррекцией самопораженных частот

Изобретение относится к технике приема и обработки радиосигналов и может быть использовано для создания радиосредств с программируемой архитектурой с цифровой обработкой сигналов в условиях воздействия внутренних излучений, вызываемых источниками питания радиосредства, для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002645738
Дата охранного документа: 28.02.2018
09.06.2018
№218.016.5ee0

Генератор широкополосных сигналов

Изобретение относится к радиотехнике и может быть использовано в качестве формирователей сигналов в передатчиках устройств связи различного назначения. Технический результат заключается в обеспечении формирования широкополосного сигнала с синфазными частотными составляющими с равномерной АЧХ за...
Тип: Изобретение
Номер охранного документа: 0002656840
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60c6

Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Изобретение относится к технологии формирования упорядоченных структур на поверхности твердого тела и может быть использовано для получения нитевидных кристаллов из различных материалов, пригодных для термического испарения. На подложку, имеющую морфологию в виде упорядоченных пор и/или других...
Тип: Изобретение
Номер охранного документа: 0002657094
Дата охранного документа: 08.06.2018
28.06.2018
№218.016.683e

Многоканальное радиоприёмное устройство с расширенным частотным диапазоном приема

Изобретение относится к области техники приема и обработки радиосигналов и может быть использовано для создания перспективных радиосредств с программируемой архитектурой и цифровой обработкой сигналов непосредственно на радиочастоте для обеспечения эффективной по стоимости и мощности...
Тип: Изобретение
Номер охранного документа: 0002658861
Дата охранного документа: 25.06.2018
10.07.2018
№218.016.6f26

Радиоприёмное устройство с ключевым управлением амплитудой размывающего сигнала

Изобретение относится к области радиотехники и может быть использовано для создания перспективных радиосредств с программируемой архитектурой с цифровой обработкой сигналов непосредственно на радиочастоте в условиях воздействия блокирующих сигналов для обеспечения устойчивой радиосвязи в...
Тип: Изобретение
Номер охранного документа: 0002660660
Дата охранного документа: 09.07.2018
28.07.2018
№218.016.760e

Способ формирования диаграммы направленности приёмной кольцевой цифровой фазированной антенной решетки

Изобретение относится к антенной технике, а именно к антенным системам с аппаратно-формируемой диаграммой направленности и электронным управлением лучом, и может быть использовано в мобильных и стационарных средствах связи. Амплитудные А и фазовые ϕ коэффициенты формируемой диаграммы...
Тип: Изобретение
Номер охранного документа: 0002662509
Дата охранного документа: 26.07.2018
09.08.2018
№218.016.788e

Передающее устройство фазоманипулированных сигналов

Изобретение относится к области радиотехники и может использоваться как для создания приемо-передающей аппаратуры, так и для измерения электрофизических характеристик среды распространения сигнала. Технический результат - повышение КПД излучения сигнала и стойкости к внешним электромагнитным...
Тип: Изобретение
Номер охранного документа: 0002663191
Дата охранного документа: 02.08.2018
09.09.2018
№218.016.8572

Способ и устройство формирования физического спектра сигнала

Изобретение относится к области радиотехники, в частности к способам и устройствам анализа и цифровой обработки широкополосных сигналов. Технический результат заключается в уменьшении времени формирования физического спектра исследуемого сигнала и возможности удобного выполнения его анализа. В...
Тип: Изобретение
Номер охранного документа: 0002666321
Дата охранного документа: 06.09.2018
Showing 11-20 of 22 items.
06.02.2020
№220.017.ff22

Устройство синхронизации приёмной и передающей части радиолинии при использовании короткоимпульсных сверхширокополосных сигналов

Изобретение относится к технике связи и может использоваться в системах беспроводной связи для осуществления успешного радиообмена короткоимпульсными сверхширокополосными сигналами без несущей. Технический результат состоит в уменьшении времени вхождения в синхронизм без использования...
Тип: Изобретение
Номер охранного документа: 0002713379
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff73

Способ повышения точности пеленгования источников радиоизлучения обнаружителем-пеленгатором с многошкальной антенной системой

Изобретение относится к области радиотехники и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач пеленгования источников радиоизлучения. Техническим результатом является повышение эффективности и точности определения...
Тип: Изобретение
Номер охранного документа: 0002713235
Дата охранного документа: 04.02.2020
12.06.2020
№220.018.260c

Способ синхронизации приёмного и передающего устройств радиолинии при использовании короткоимпульсных сверхширокополосных сигналов

Изобретение относится к области радиотехники и может быть использовано при разработке высокоскоростных систем передачи информации, систем множественного доступа и других радиоэлектронных систем и средств, использующих сложные сигналы с повышенной помехозащищённостью и скрытностью передачи....
Тип: Изобретение
Номер охранного документа: 0002723269
Дата охранного документа: 09.06.2020
23.05.2023
№223.018.6cf5

Способ классификации подвижных объектов наземной техники с использованием особенностей сцепления их с почвой

Изобретение относится к области сейсмическойразведки и может быть использовано в охранно- и разведывательно-сигнализационных комплексах и системах для обработки сейсмических сигналов, генерируемых объектами наземной техники (ОНТ) в поверхностном слое почвы. Предложен способ классификации...
Тип: Изобретение
Номер охранного документа: 0002774733
Дата охранного документа: 22.06.2022
23.05.2023
№223.018.6d1c

Модифицированная антенна вивальди

Изобретение относится к антенной технике и предназначено для использования в качестве сверхширокополосной направленной антенны или элемента сверхширокополосной антенной решетки в радиотехнических системах. Технический результат - создание сверхширокополосной модифицированной антенны Вивальди,...
Тип: Изобретение
Номер охранного документа: 0002773254
Дата охранного документа: 01.06.2022
23.05.2023
№223.018.6d1e

Способ обнаружения подвижных объектов наземной техники

Изобретение относится к области сейсмическойразведки и может быть использовано в охранно- и разведывательно-сигнализационных комплексах и системах для выявления в сейсмических колебаниях поверхностного слоя почвы признаков, характерных для движущихся объектов наземной техники любого класса....
Тип: Изобретение
Номер охранного документа: 0002773269
Дата охранного документа: 01.06.2022
23.05.2023
№223.018.6d21

Способ определения географических координат источников радиоизлучения в многоцелевой обстановке

Изобретение относится к радиотехнике, а именно к способам определения местоположения источников радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения координат ИРИ с летно-подъемного средства (ЛПС), в частности с беспилотного ЛПС....
Тип: Изобретение
Номер охранного документа: 0002773307
Дата охранного документа: 01.06.2022
23.05.2023
№223.018.6d43

Способ адаптивного многоканального обнаружения радиосигналов в условиях помех с неизвестными параметрами

Использование: изобретение относится к области радиотехники и может быть использовано в системах радиомониторинга для решения задач обнаружения радиосигналов неизвестной формы в условиях внешних помех с неизвестными параметрами. Сущность: в способе адаптивного многоканального обнаружения...
Тип: Изобретение
Номер охранного документа: 0002768217
Дата охранного документа: 23.03.2022
23.05.2023
№223.018.6d46

Способ двухэтапной селекции спектральных компонент радиосигналов в многоканальной аппаратуре радиомониторинга

Изобретение относится к радиотехнике и может быть использовано в системах радиомониторинга для многоканального обнаружения и моноимпульсного пеленгования источников радиоизлучения (ИРИ). Технический результат - повышение быстродействия и достоверности селекции спектральных компонент...
Тип: Изобретение
Номер охранного документа: 0002768238
Дата охранного документа: 23.03.2022
23.05.2023
№223.018.6d48

Способ одноэтапного адаптивного определения координат источников радиоизлучений

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для определения координат наземных и воздушных источников радиоизлучения (ИРИ), в том числе размещенных на беспилотных летательных аппаратах....
Тип: Изобретение
Номер охранного документа: 0002768011
Дата охранного документа: 23.03.2022
+ добавить свой РИД